심슨의 역설
강의영상
https://youtube.com/playlist?list=PLQqh36zP38-wB73rDChn234r4ded7tDV_
imports
심슨의 역설
-
버클리대학교의 입학데이터
-
주장: 버클리대학에 gender bias가 존재한다.
- 1973년 가을학기의 입학통계에 따르면 지원하는 남성이 여성보다 훨씬 많이 합격했고, 그 차이가 너무 커서 우연의 일치라 보기 어렵다.
df=pd.read_csv("https://raw.githubusercontent.com/guebin/DV2022/master/posts/Simpson.csv",index_col=0,header=[0,1])\
.stack().stack().reset_index()\
.rename({'level_0':'department','level_1':'result','level_2':'gender',0:'count'},axis=1)
df
department | result | gender | count | |
---|---|---|---|---|
0 | A | fail | female | 19 |
1 | A | fail | male | 314 |
2 | A | pass | female | 89 |
3 | A | pass | male | 511 |
4 | B | fail | female | 7 |
5 | B | fail | male | 208 |
6 | B | pass | female | 18 |
7 | B | pass | male | 352 |
8 | C | fail | female | 391 |
9 | C | fail | male | 204 |
10 | C | pass | female | 202 |
11 | C | pass | male | 121 |
12 | D | fail | female | 244 |
13 | D | fail | male | 279 |
14 | D | pass | female | 131 |
15 | D | pass | male | 138 |
16 | E | fail | female | 299 |
17 | E | fail | male | 137 |
18 | E | pass | female | 94 |
19 | E | pass | male | 54 |
20 | F | fail | female | 103 |
21 | F | fail | male | 149 |
22 | F | pass | female | 238 |
23 | F | pass | male | 224 |
시각화1: 전체합격률
-
df1
gender | result | count | |
---|---|---|---|
0 | female | fail | 1063 |
1 | female | pass | 772 |
2 | male | fail | 1291 |
3 | male | pass | 1400 |
-
df2
gender | count2 | |
---|---|---|
0 | female | 1835 |
1 | male | 2691 |
-
merge: 두개의 데이터프레임을 합친다
df.groupby(['gender','result']).agg({'count':np.sum}).reset_index()\
.merge(df.groupby('gender').agg({'count':np.sum}).reset_index().rename({'count':'count2'},axis=1))
gender | result | count | count2 | |
---|---|---|---|---|
0 | female | fail | 1063 | 1835 |
1 | female | pass | 772 | 1835 |
2 | male | fail | 1291 | 2691 |
3 | male | pass | 1400 | 2691 |
-
비율계산
df.groupby(['gender','result']).agg({'count':np.sum}).reset_index()\
.merge(df.groupby('gender').agg({'count':np.sum}).reset_index().rename({'count':'count2'},axis=1))\
.eval('rate = count/count2')
gender | result | count | count2 | rate | |
---|---|---|---|---|---|
0 | female | fail | 1063 | 1835 | 0.579292 |
1 | female | pass | 772 | 1835 | 0.420708 |
2 | male | fail | 1291 | 2691 | 0.479747 |
3 | male | pass | 1400 | 2691 | 0.520253 |
-
시각화
data1= df.groupby(['gender','result']).agg({'count':np.sum}).reset_index()\
.merge(df.groupby('gender').agg({'count':np.sum}).reset_index().rename({'count':'count2'},axis=1))\
.eval('rate = count/count2')
ggplot(data1.query('result=="pass"'))+geom_col(aes(x='gender',fill='gender',y='rate'))
<ggplot: (8789343060161)>
-
결론: 남자의 합격률이 더 높다. \(\to\) 성차별이 있어보인다(?)
시각화2: 학과별 합격률
-
df2
df.groupby(['department','gender']).agg({'count':np.sum}).reset_index().rename({'count':'count2'},axis=1)
department | gender | count2 | |
---|---|---|---|
0 | A | female | 108 |
1 | A | male | 825 |
2 | B | female | 25 |
3 | B | male | 560 |
4 | C | female | 593 |
5 | C | male | 325 |
6 | D | female | 375 |
7 | D | male | 417 |
8 | E | female | 393 |
9 | E | male | 191 |
10 | F | female | 341 |
11 | F | male | 373 |
-
merge
df.merge(df.groupby(['department','gender']).agg({'count':np.sum}).reset_index().rename({'count':'count2'},axis=1))\
.eval('rate = count/count2')
department | result | gender | count | count2 | rate | |
---|---|---|---|---|---|---|
0 | A | fail | female | 19 | 108 | 0.175926 |
1 | A | pass | female | 89 | 108 | 0.824074 |
2 | A | fail | male | 314 | 825 | 0.380606 |
3 | A | pass | male | 511 | 825 | 0.619394 |
4 | B | fail | female | 7 | 25 | 0.280000 |
5 | B | pass | female | 18 | 25 | 0.720000 |
6 | B | fail | male | 208 | 560 | 0.371429 |
7 | B | pass | male | 352 | 560 | 0.628571 |
8 | C | fail | female | 391 | 593 | 0.659359 |
9 | C | pass | female | 202 | 593 | 0.340641 |
10 | C | fail | male | 204 | 325 | 0.627692 |
11 | C | pass | male | 121 | 325 | 0.372308 |
12 | D | fail | female | 244 | 375 | 0.650667 |
13 | D | pass | female | 131 | 375 | 0.349333 |
14 | D | fail | male | 279 | 417 | 0.669065 |
15 | D | pass | male | 138 | 417 | 0.330935 |
16 | E | fail | female | 299 | 393 | 0.760814 |
17 | E | pass | female | 94 | 393 | 0.239186 |
18 | E | fail | male | 137 | 191 | 0.717277 |
19 | E | pass | male | 54 | 191 | 0.282723 |
20 | F | fail | female | 103 | 341 | 0.302053 |
21 | F | pass | female | 238 | 341 | 0.697947 |
22 | F | fail | male | 149 | 373 | 0.399464 |
23 | F | pass | male | 224 | 373 | 0.600536 |
-
시각화
data2=df.merge(df.groupby(['department','gender']).agg({'count':np.sum}).reset_index().rename({'count':'count2'},axis=1))\
.eval('rate = count/count2')
ggplot(data2.query('result=="pass"'))+geom_col(aes(x='gender',fill='gender',y='rate'))\
+facet_wrap('department')
<ggplot: (8789343111249)>
- 학과별로 살펴보니 오히려 A,B,F,D의 경우 여성의 합격률이 높다.
-
교재에서 설명한 이유: 여성이 합격률이 낮은 학과에만 많이 지원하였기 때문
ggplot(data2.query('result=="pass"'))+geom_col(aes(x='department',y='count2',fill='gender'),position='dodge')
<ggplot: (8789343070225)>
- 살펴보니 합격률이 높은 A,B학과의 경우 상대적으로 남성이 많이 지원하였음. 합격률이 낮은 C,D학과는 상대적으로 여성이 많이 지원함. D,F의 지원수는 비슷
HW
department | result | gender | count | |
---|---|---|---|---|
0 | A | fail | female | 0 |
1 | A | fail | male | 100 |
2 | A | pass | female | 1 |
3 | A | pass | male | 900 |
4 | B | fail | female | 400 |
5 | B | fail | male | 1 |
6 | B | pass | female | 600 |
7 | B | pass | male | 1 |
-
시각화1: 남녀합격률시각화
-
시각화2: 학과별 남녀합격률 시각화
- A학과: 쓰면 거의 붙는 학과
- B학과: 쓰면 반정도 붙는 학과
-
시각화3: 학과별 지원자 수 시각화
- 여학생은 쓰면 붙는 A학과에는 거의 지원안함, 대신에 쓰면 반정도 붙는 B학과에 대부분 지원함