(6주차) 10월19일
드랍아웃, fastai를 이용한 학습, CPU vs GPU
• 최규빈 • 49 min read
- 강의영상
- 네트워크 설정, 옵티마이저, 로스
- 모형학습
- train / validation
- 드랍아웃
- 학습과정 비교 (주의: 코드복잡함)
- pytorch + fastai
- CPU vs GPU 시간비교
- 숙제
import torch
import matplotlib.pyplot as plt
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
plt.plot(X,y)
[<matplotlib.lines.Line2D at 0x7f6f577c6820>]
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=512),
torch.nn.ReLU(),
torch.nn.Linear(in_features=512,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
plt.plot(X,y)
plt.plot(X,yhat.data)
[<matplotlib.lines.Line2D at 0x7f6f54ac3760>]
X1=X[:80]
y1=y[:80]
X2=X[80:]
y2=y[80:]
torch.manual_seed(1)
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=512),
torch.nn.ReLU(),
torch.nn.Linear(in_features=512,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
for epoc in range(1000):
## 1
y1hat=net(X1)
## 2
loss=loss_fn(y1hat,y1)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
plt.plot(X,y)
plt.plot(X1,net(X1).data,'--r')
plt.plot(X2,net(X2).data,'--g')
[<matplotlib.lines.Line2D at 0x7f6f549d9790>]
X1=X[:80]
y1=y[:80]
X2=X[80:]
y2=y[80:]
torch.manual_seed(1)
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=512),
torch.nn.ReLU(),
torch.nn.Dropout(0.8),
torch.nn.Linear(in_features=512,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
for epoc in range(1000):
## 1
y1hat=net(X1)
## 2
loss=loss_fn(y1hat,y1)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
net.eval() ## 네트워크를 평가모드로 전환
plt.plot(X,y)
plt.plot(X1,net(X1).data,'--r')
plt.plot(X2,net(X2).data,'--g')
[<matplotlib.lines.Line2D at 0x7f6f401b5a90>]
-
데이터 생성
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)
-
tr/val 분리
X_tr=X[:80]
y_tr=y[:80]
X_val=X[80:]
y_val=y[80:]
-
네트워크, 옵티마이저, 손실함수 설정
- 드랍아웃을 이용한 네트워트 (net2)와 그렇지 않은 네트워크 (net1)
- 대응하는 옵티마이저 1,2 설정
- 손실함수
torch.manual_seed(1)
net1=torch.nn.Sequential(
torch.nn.Linear(1,512),
torch.nn.ReLU(),
torch.nn.Linear(512,1))
optimizer_net1 = torch.optim.Adam(net1.parameters())
net2=torch.nn.Sequential(
torch.nn.Linear(1,512),
torch.nn.ReLU(),
torch.nn.Dropout(0.8),
torch.nn.Linear(512,1))
optimizer_net2 = torch.optim.Adam(net2.parameters())
loss_fn=torch.nn.MSELoss()
tr_loss_net1=[]
val_loss_net1=[]
tr_loss_net2=[]
val_loss_net2=[]
for epoc in range(1000):
## 1
yhat_tr_net1 = net1(X_tr)
## 2
loss_tr = loss_fn(yhat_tr_net1, y_tr)
## 3
loss_tr.backward()
## 4
optimizer_net1.step()
net1.zero_grad()
## 5 기록
### tr
tr_loss_net1.append(loss_tr.item())
### val
yhat_val_net1 = net1(X_val)
loss_val = loss_fn(yhat_val_net1,y_val)
val_loss_net1.append(loss_val.item())
for epoc in range(1000):
## 1
yhat_tr_net2 = net2(X_tr)
## 2
loss_tr = loss_fn(yhat_tr_net2, y_tr)
## 3
loss_tr.backward()
## 4
optimizer_net2.step()
net2.zero_grad()
## 5 기록
### tr
net2.eval()
tr_loss_net2.append(loss_tr.item())
### val
yhat_val_net2 = net2(X_val)
loss_val = loss_fn(yhat_val_net2,y_val)
val_loss_net2.append(loss_val.item())
net2.train()
net2.eval()
fig , ((ax1,ax2),(ax3,ax4)) = plt.subplots(2,2)
ax1.plot(X,y,'.');ax1.plot(X_tr,net1(X_tr).data); ax1.plot(X_val,net1(X_val).data);
ax2.plot(X,y,'.');ax2.plot(X_tr,net2(X_tr).data); ax2.plot(X_val,net2(X_val).data);
ax3.plot(tr_loss_net1);ax3.plot(val_loss_net1);
ax4.plot(tr_loss_net2);ax4.plot(val_loss_net2);
-
다 좋은데 코드를 짜는것이 너무 힘들다.
- 생각해보니까 미니배치도 만들어야 함 + 미니배치를 나눈상태에서 GPU 메모리에 파라메터도 올려야함.
- 조기종료와 같은 기능도 구현해야함 + 기타등등을 구현해야함.
- 나중에는 학습률을 서로 다르게 돌려가며 결과도 기록해야함 $\to$ 그래야 좋은 학습률 선택가능
- for문안에 step1~step4를 넣는것도 너무 반복작업임.
- 등등..
-
위와 같은 것들의 특징: 머리로 상상하기는 쉽지만 실제 구현하는 것은 까다롭다.
-
사실 우리가 하고싶은것
- 아키텍처를 설계: 데이터를 보고 맞춰서 설계해야할 때가 많음 (우리가 해야한다)
- 손실함수: 통계학과 교수님들이 연구하심
- 옵티마이저: 산공교수님들이 연구하심
-
제 생각
- 기업의욕심: read-data를 분석하는 딥러닝 아키텍처 설계 $\to$ 아키텍처별로 결과를 관찰 (편하게) $\Longrightarrow$ fastai + read data
- 학생의욕심: 그러면서도 모형이 돌아가는 원리는 아주 세밀하게 알고싶음 $\Longrightarrow$ pytorch + toy example (regression 등을 위주로)
- 연구자의욕심: 기존의 모형을 조금 변경해서 쓰고싶음 $\Longrightarrow$ (pytorch +fastai) + any data
-
tensorflow + keras vs pytorch + fastai
-
데이터셋을 만든다.
X_tr=X[:80]
y_tr=y[:80]
X_val=X[80:]
y_val=y[80:]
ds1=torch.utils.data.TensorDataset(X_tr,y_tr)
ds2=torch.utils.data.TensorDataset(X_val,y_val)
-
데이터로더를 만든다.
dl1 = torch.utils.data.DataLoader(ds1, batch_size=80)
dl2 = torch.utils.data.DataLoader(ds2, batch_size=20)
-
데이터로더스를 만든다.
from fastai.vision.all import *
dls=DataLoaders(dl1,dl2)
-
네트워크 설계 (드랍아웃 제외)
torch.manual_seed(1)
net_fastai = torch.nn.Sequential(
torch.nn.Linear(in_features=1, out_features=512),
torch.nn.ReLU(),
#torch.nn.Dropout(0.8),
torch.nn.Linear(in_features=512, out_features=1))
#optimizer
loss_fn=torch.nn.MSELoss()
-
러너오브젝트 (for문 대신돌려주는 오브젝트)
lrnr= Learner(dls,net_fastai,opt_func=Adam,loss_func=loss_fn)
-
에폭만 설정하고 바로 학습
lrnr.fit(1000)
epoch | train_loss | valid_loss | time |
---|---|---|---|
0 | 1.277156 | 0.491314 | 00:00 |
1 | 1.277145 | 0.455286 | 00:00 |
2 | 1.275104 | 0.444275 | 00:00 |
3 | 1.274429 | 0.465787 | 00:00 |
4 | 1.273436 | 0.507203 | 00:00 |
5 | 1.272421 | 0.548102 | 00:00 |
6 | 1.271840 | 0.561292 | 00:00 |
7 | 1.271377 | 0.549409 | 00:00 |
8 | 1.270855 | 0.530416 | 00:00 |
9 | 1.270437 | 0.520700 | 00:00 |
10 | 1.270176 | 0.526273 | 00:00 |
11 | 1.269935 | 0.543579 | 00:00 |
12 | 1.269655 | 0.562939 | 00:00 |
13 | 1.269411 | 0.571586 | 00:00 |
14 | 1.269217 | 0.563700 | 00:00 |
15 | 1.269018 | 0.543646 | 00:00 |
16 | 1.268787 | 0.521385 | 00:00 |
17 | 1.268563 | 0.505799 | 00:00 |
18 | 1.268362 | 0.500011 | 00:00 |
19 | 1.268159 | 0.501830 | 00:00 |
20 | 1.267941 | 0.506255 | 00:00 |
21 | 1.267730 | 0.506739 | 00:00 |
22 | 1.267540 | 0.499733 | 00:00 |
23 | 1.267353 | 0.487385 | 00:00 |
24 | 1.267163 | 0.474839 | 00:00 |
25 | 1.266981 | 0.466926 | 00:00 |
26 | 1.266814 | 0.465347 | 00:00 |
27 | 1.266648 | 0.468656 | 00:00 |
28 | 1.266480 | 0.473641 | 00:00 |
29 | 1.266316 | 0.476266 | 00:00 |
30 | 1.266156 | 0.474677 | 00:00 |
31 | 1.265996 | 0.469958 | 00:00 |
32 | 1.265833 | 0.465630 | 00:00 |
33 | 1.265673 | 0.464544 | 00:00 |
34 | 1.265514 | 0.467181 | 00:00 |
35 | 1.265355 | 0.472571 | 00:00 |
36 | 1.265194 | 0.477105 | 00:00 |
37 | 1.265037 | 0.478357 | 00:00 |
38 | 1.264880 | 0.475766 | 00:00 |
39 | 1.264724 | 0.471696 | 00:00 |
40 | 1.264569 | 0.469089 | 00:00 |
41 | 1.264416 | 0.469158 | 00:00 |
42 | 1.264262 | 0.471343 | 00:00 |
43 | 1.264108 | 0.472992 | 00:00 |
44 | 1.263955 | 0.471979 | 00:00 |
45 | 1.263801 | 0.468276 | 00:00 |
46 | 1.263646 | 0.463477 | 00:00 |
47 | 1.263491 | 0.460086 | 00:00 |
48 | 1.263336 | 0.458932 | 00:00 |
49 | 1.263181 | 0.459443 | 00:00 |
50 | 1.263025 | 0.459690 | 00:00 |
51 | 1.262869 | 0.457996 | 00:00 |
52 | 1.262714 | 0.454969 | 00:00 |
53 | 1.262558 | 0.451982 | 00:00 |
54 | 1.262402 | 0.450564 | 00:00 |
55 | 1.262247 | 0.450934 | 00:00 |
56 | 1.262090 | 0.451861 | 00:00 |
57 | 1.261933 | 0.451914 | 00:00 |
58 | 1.261776 | 0.450721 | 00:00 |
59 | 1.261619 | 0.448978 | 00:00 |
60 | 1.261461 | 0.447796 | 00:00 |
61 | 1.261303 | 0.448038 | 00:00 |
62 | 1.261144 | 0.448761 | 00:00 |
63 | 1.260986 | 0.449142 | 00:00 |
64 | 1.260826 | 0.448443 | 00:00 |
65 | 1.260667 | 0.446837 | 00:00 |
66 | 1.260507 | 0.445661 | 00:00 |
67 | 1.260347 | 0.445344 | 00:00 |
68 | 1.260187 | 0.445592 | 00:00 |
69 | 1.260026 | 0.445488 | 00:00 |
70 | 1.259866 | 0.444427 | 00:00 |
71 | 1.259705 | 0.442824 | 00:00 |
72 | 1.259543 | 0.441615 | 00:00 |
73 | 1.259382 | 0.441126 | 00:00 |
74 | 1.259220 | 0.441023 | 00:00 |
75 | 1.259058 | 0.440497 | 00:00 |
76 | 1.258896 | 0.439592 | 00:00 |
77 | 1.258733 | 0.438460 | 00:00 |
78 | 1.258569 | 0.437588 | 00:00 |
79 | 1.258405 | 0.437321 | 00:00 |
80 | 1.258241 | 0.437219 | 00:00 |
81 | 1.258077 | 0.436916 | 00:00 |
82 | 1.257912 | 0.435913 | 00:00 |
83 | 1.257747 | 0.435003 | 00:00 |
84 | 1.257582 | 0.434601 | 00:00 |
85 | 1.257416 | 0.434494 | 00:00 |
86 | 1.257249 | 0.434309 | 00:00 |
87 | 1.257081 | 0.433745 | 00:00 |
88 | 1.256913 | 0.432914 | 00:00 |
89 | 1.256744 | 0.432331 | 00:00 |
90 | 1.256575 | 0.432165 | 00:00 |
91 | 1.256406 | 0.432003 | 00:00 |
92 | 1.256236 | 0.431670 | 00:00 |
93 | 1.256065 | 0.430937 | 00:00 |
94 | 1.255894 | 0.430317 | 00:00 |
95 | 1.255723 | 0.429924 | 00:00 |
96 | 1.255550 | 0.429707 | 00:00 |
97 | 1.255377 | 0.429296 | 00:00 |
98 | 1.255203 | 0.428846 | 00:00 |
99 | 1.255029 | 0.428160 | 00:00 |
100 | 1.254854 | 0.427743 | 00:00 |
101 | 1.254679 | 0.427369 | 00:00 |
102 | 1.254504 | 0.426952 | 00:00 |
103 | 1.254328 | 0.426511 | 00:00 |
104 | 1.254151 | 0.426140 | 00:00 |
105 | 1.253973 | 0.425836 | 00:00 |
106 | 1.253796 | 0.425516 | 00:00 |
107 | 1.253617 | 0.425156 | 00:00 |
108 | 1.253438 | 0.424890 | 00:00 |
109 | 1.253259 | 0.424599 | 00:00 |
110 | 1.253079 | 0.424250 | 00:00 |
111 | 1.252898 | 0.423973 | 00:00 |
112 | 1.252717 | 0.423872 | 00:00 |
113 | 1.252535 | 0.423620 | 00:00 |
114 | 1.252353 | 0.423358 | 00:00 |
115 | 1.252170 | 0.422883 | 00:00 |
116 | 1.251987 | 0.422549 | 00:00 |
117 | 1.251803 | 0.422482 | 00:00 |
118 | 1.251619 | 0.422277 | 00:00 |
119 | 1.251435 | 0.421926 | 00:00 |
120 | 1.251249 | 0.421529 | 00:00 |
121 | 1.251063 | 0.421358 | 00:00 |
122 | 1.250877 | 0.421251 | 00:00 |
123 | 1.250690 | 0.421048 | 00:00 |
124 | 1.250502 | 0.420763 | 00:00 |
125 | 1.250314 | 0.420404 | 00:00 |
126 | 1.250125 | 0.420322 | 00:00 |
127 | 1.249936 | 0.420242 | 00:00 |
128 | 1.249746 | 0.420147 | 00:00 |
129 | 1.249556 | 0.419852 | 00:00 |
130 | 1.249366 | 0.419579 | 00:00 |
131 | 1.249175 | 0.419527 | 00:00 |
132 | 1.248984 | 0.419416 | 00:00 |
133 | 1.248792 | 0.419148 | 00:00 |
134 | 1.248599 | 0.418997 | 00:00 |
135 | 1.248406 | 0.418859 | 00:00 |
136 | 1.248212 | 0.418857 | 00:00 |
137 | 1.248018 | 0.418830 | 00:00 |
138 | 1.247823 | 0.418669 | 00:00 |
139 | 1.247628 | 0.418535 | 00:00 |
140 | 1.247432 | 0.418488 | 00:00 |
141 | 1.247236 | 0.418400 | 00:00 |
142 | 1.247040 | 0.418214 | 00:00 |
143 | 1.246843 | 0.417942 | 00:00 |
144 | 1.246645 | 0.417894 | 00:00 |
145 | 1.246448 | 0.417886 | 00:00 |
146 | 1.246250 | 0.417820 | 00:00 |
147 | 1.246051 | 0.417744 | 00:00 |
148 | 1.245852 | 0.417791 | 00:00 |
149 | 1.245651 | 0.417857 | 00:00 |
150 | 1.245451 | 0.417884 | 00:00 |
151 | 1.245250 | 0.417780 | 00:00 |
152 | 1.245049 | 0.417736 | 00:00 |
153 | 1.244848 | 0.417721 | 00:00 |
154 | 1.244646 | 0.417662 | 00:00 |
155 | 1.244443 | 0.417639 | 00:00 |
156 | 1.244240 | 0.417623 | 00:00 |
157 | 1.244037 | 0.417599 | 00:00 |
158 | 1.243833 | 0.417624 | 00:00 |
159 | 1.243629 | 0.417713 | 00:00 |
160 | 1.243424 | 0.417719 | 00:00 |
161 | 1.243219 | 0.417705 | 00:00 |
162 | 1.243013 | 0.417843 | 00:00 |
163 | 1.242807 | 0.417914 | 00:00 |
164 | 1.242601 | 0.417929 | 00:00 |
165 | 1.242394 | 0.417990 | 00:00 |
166 | 1.242187 | 0.418116 | 00:00 |
167 | 1.241980 | 0.418189 | 00:00 |
168 | 1.241772 | 0.418205 | 00:00 |
169 | 1.241564 | 0.418334 | 00:00 |
170 | 1.241355 | 0.418501 | 00:00 |
171 | 1.241146 | 0.418554 | 00:00 |
172 | 1.240937 | 0.418608 | 00:00 |
173 | 1.240727 | 0.418772 | 00:00 |
174 | 1.240517 | 0.418854 | 00:00 |
175 | 1.240307 | 0.418996 | 00:00 |
176 | 1.240097 | 0.419114 | 00:00 |
177 | 1.239886 | 0.419256 | 00:00 |
178 | 1.239675 | 0.419356 | 00:00 |
179 | 1.239463 | 0.419527 | 00:00 |
180 | 1.239251 | 0.419626 | 00:00 |
181 | 1.239039 | 0.419796 | 00:00 |
182 | 1.238827 | 0.419984 | 00:00 |
183 | 1.238615 | 0.420269 | 00:00 |
184 | 1.238402 | 0.420389 | 00:00 |
185 | 1.238188 | 0.420558 | 00:00 |
186 | 1.237974 | 0.420761 | 00:00 |
187 | 1.237759 | 0.420946 | 00:00 |
188 | 1.237545 | 0.421110 | 00:00 |
189 | 1.237331 | 0.421286 | 00:00 |
190 | 1.237115 | 0.421507 | 00:00 |
191 | 1.236900 | 0.421727 | 00:00 |
192 | 1.236684 | 0.421919 | 00:00 |
193 | 1.236467 | 0.422220 | 00:00 |
194 | 1.236251 | 0.422527 | 00:00 |
195 | 1.236034 | 0.422738 | 00:00 |
196 | 1.235817 | 0.422963 | 00:00 |
197 | 1.235600 | 0.423270 | 00:00 |
198 | 1.235382 | 0.423566 | 00:00 |
199 | 1.235164 | 0.423725 | 00:00 |
200 | 1.234946 | 0.423986 | 00:00 |
201 | 1.234727 | 0.424333 | 00:00 |
202 | 1.234508 | 0.424390 | 00:00 |
203 | 1.234289 | 0.424699 | 00:00 |
204 | 1.234070 | 0.425270 | 00:00 |
205 | 1.233850 | 0.425272 | 00:00 |
206 | 1.233630 | 0.425684 | 00:00 |
207 | 1.233410 | 0.426120 | 00:00 |
208 | 1.233190 | 0.426429 | 00:00 |
209 | 1.232970 | 0.426418 | 00:00 |
210 | 1.232749 | 0.427115 | 00:00 |
211 | 1.232528 | 0.427216 | 00:00 |
212 | 1.232306 | 0.427429 | 00:00 |
213 | 1.232085 | 0.427920 | 00:00 |
214 | 1.231864 | 0.428236 | 00:00 |
215 | 1.231642 | 0.428453 | 00:00 |
216 | 1.231421 | 0.428856 | 00:00 |
217 | 1.231198 | 0.429515 | 00:00 |
218 | 1.230976 | 0.429647 | 00:00 |
219 | 1.230753 | 0.430105 | 00:00 |
220 | 1.230530 | 0.430761 | 00:00 |
221 | 1.230307 | 0.430849 | 00:00 |
222 | 1.230084 | 0.431280 | 00:00 |
223 | 1.229861 | 0.431862 | 00:00 |
224 | 1.229637 | 0.432191 | 00:00 |
225 | 1.229413 | 0.432374 | 00:00 |
226 | 1.229189 | 0.433027 | 00:00 |
227 | 1.228966 | 0.433583 | 00:00 |
228 | 1.228741 | 0.433802 | 00:00 |
229 | 1.228517 | 0.434520 | 00:00 |
230 | 1.228293 | 0.435066 | 00:00 |
231 | 1.228068 | 0.435148 | 00:00 |
232 | 1.227843 | 0.435727 | 00:00 |
233 | 1.227618 | 0.436116 | 00:00 |
234 | 1.227393 | 0.435958 | 00:00 |
235 | 1.227168 | 0.436991 | 00:00 |
236 | 1.226943 | 0.437511 | 00:00 |
237 | 1.226718 | 0.438006 | 00:00 |
238 | 1.226493 | 0.438966 | 00:00 |
239 | 1.226267 | 0.439815 | 00:00 |
240 | 1.226041 | 0.439775 | 00:00 |
241 | 1.225815 | 0.440939 | 00:00 |
242 | 1.225590 | 0.440882 | 00:00 |
243 | 1.225363 | 0.440836 | 00:00 |
244 | 1.225137 | 0.441480 | 00:00 |
245 | 1.224910 | 0.441281 | 00:00 |
246 | 1.224684 | 0.442244 | 00:00 |
247 | 1.224457 | 0.442685 | 00:00 |
248 | 1.224231 | 0.443636 | 00:00 |
249 | 1.224004 | 0.444059 | 00:00 |
250 | 1.223777 | 0.444930 | 00:00 |
251 | 1.223551 | 0.445588 | 00:00 |
252 | 1.223324 | 0.446594 | 00:00 |
253 | 1.223097 | 0.446623 | 00:00 |
254 | 1.222870 | 0.447728 | 00:00 |
255 | 1.222642 | 0.447877 | 00:00 |
256 | 1.222415 | 0.448117 | 00:00 |
257 | 1.222188 | 0.449032 | 00:00 |
258 | 1.221961 | 0.449322 | 00:00 |
259 | 1.221733 | 0.449238 | 00:00 |
260 | 1.221505 | 0.451040 | 00:00 |
261 | 1.221278 | 0.450359 | 00:00 |
262 | 1.221051 | 0.452112 | 00:00 |
263 | 1.220824 | 0.452225 | 00:00 |
264 | 1.220597 | 0.453696 | 00:00 |
265 | 1.220369 | 0.454094 | 00:00 |
266 | 1.220141 | 0.454912 | 00:00 |
267 | 1.219914 | 0.455107 | 00:00 |
268 | 1.219687 | 0.455415 | 00:00 |
269 | 1.219459 | 0.455917 | 00:00 |
270 | 1.219232 | 0.456291 | 00:00 |
271 | 1.219005 | 0.457516 | 00:00 |
272 | 1.218778 | 0.458215 | 00:00 |
273 | 1.218550 | 0.459798 | 00:00 |
274 | 1.218323 | 0.460129 | 00:00 |
275 | 1.218096 | 0.461005 | 00:00 |
276 | 1.217869 | 0.460792 | 00:00 |
277 | 1.217642 | 0.461096 | 00:00 |
278 | 1.217414 | 0.460790 | 00:00 |
279 | 1.217186 | 0.462483 | 00:00 |
280 | 1.216958 | 0.462127 | 00:00 |
281 | 1.216730 | 0.466005 | 00:00 |
282 | 1.216504 | 0.464130 | 00:00 |
283 | 1.216277 | 0.469921 | 00:00 |
284 | 1.216050 | 0.463971 | 00:00 |
285 | 1.215824 | 0.471405 | 00:00 |
286 | 1.215599 | 0.463746 | 00:00 |
287 | 1.215374 | 0.471046 | 00:00 |
288 | 1.215147 | 0.466031 | 00:00 |
289 | 1.214920 | 0.469181 | 00:00 |
290 | 1.214693 | 0.471406 | 00:00 |
291 | 1.214465 | 0.469302 | 00:00 |
292 | 1.214239 | 0.475704 | 00:00 |
293 | 1.214013 | 0.471744 | 00:00 |
294 | 1.213787 | 0.475277 | 00:00 |
295 | 1.213560 | 0.475393 | 00:00 |
296 | 1.213333 | 0.472734 | 00:00 |
297 | 1.213107 | 0.477125 | 00:00 |
298 | 1.212881 | 0.474237 | 00:00 |
299 | 1.212655 | 0.477554 | 00:00 |
300 | 1.212428 | 0.477674 | 00:00 |
301 | 1.212203 | 0.478424 | 00:00 |
302 | 1.211978 | 0.481764 | 00:00 |
303 | 1.211752 | 0.479665 | 00:00 |
304 | 1.211527 | 0.483109 | 00:00 |
305 | 1.211300 | 0.481590 | 00:00 |
306 | 1.211075 | 0.482610 | 00:00 |
307 | 1.210849 | 0.484192 | 00:00 |
308 | 1.210624 | 0.482331 | 00:00 |
309 | 1.210399 | 0.487119 | 00:00 |
310 | 1.210175 | 0.483336 | 00:00 |
311 | 1.209951 | 0.488953 | 00:00 |
312 | 1.209726 | 0.486667 | 00:00 |
313 | 1.209502 | 0.489473 | 00:00 |
314 | 1.209278 | 0.490365 | 00:00 |
315 | 1.209055 | 0.488710 | 00:00 |
316 | 1.208831 | 0.493933 | 00:00 |
317 | 1.208609 | 0.488504 | 00:00 |
318 | 1.208385 | 0.495865 | 00:00 |
319 | 1.208164 | 0.490756 | 00:00 |
320 | 1.207942 | 0.495374 | 00:00 |
321 | 1.207719 | 0.495526 | 00:00 |
322 | 1.207496 | 0.493535 | 00:00 |
323 | 1.207274 | 0.500878 | 00:00 |
324 | 1.207053 | 0.492885 | 00:00 |
325 | 1.206832 | 0.502528 | 00:00 |
326 | 1.206610 | 0.497001 | 00:00 |
327 | 1.206388 | 0.499801 | 00:00 |
328 | 1.206167 | 0.504342 | 00:00 |
329 | 1.205946 | 0.498521 | 00:00 |
330 | 1.205726 | 0.507436 | 00:00 |
331 | 1.205506 | 0.502286 | 00:00 |
332 | 1.205286 | 0.504370 | 00:00 |
333 | 1.205066 | 0.506807 | 00:00 |
334 | 1.204845 | 0.502806 | 00:00 |
335 | 1.204626 | 0.508645 | 00:00 |
336 | 1.204406 | 0.505454 | 00:00 |
337 | 1.204187 | 0.507372 | 00:00 |
338 | 1.203967 | 0.511078 | 00:00 |
339 | 1.203748 | 0.508682 | 00:00 |
340 | 1.203528 | 0.515019 | 00:00 |
341 | 1.203309 | 0.511679 | 00:00 |
342 | 1.203090 | 0.515847 | 00:00 |
343 | 1.202872 | 0.514210 | 00:00 |
344 | 1.202654 | 0.513550 | 00:00 |
345 | 1.202437 | 0.517338 | 00:00 |
346 | 1.202219 | 0.513895 | 00:00 |
347 | 1.202002 | 0.518733 | 00:00 |
348 | 1.201786 | 0.517710 | 00:00 |
349 | 1.201569 | 0.519124 | 00:00 |
350 | 1.201353 | 0.523362 | 00:00 |
351 | 1.201136 | 0.521150 | 00:00 |
352 | 1.200921 | 0.526446 | 00:00 |
353 | 1.200706 | 0.522027 | 00:00 |
354 | 1.200491 | 0.526017 | 00:00 |
355 | 1.200276 | 0.522019 | 00:00 |
356 | 1.200061 | 0.525617 | 00:00 |
357 | 1.199846 | 0.524996 | 00:00 |
358 | 1.199632 | 0.526826 | 00:00 |
359 | 1.199418 | 0.530623 | 00:00 |
360 | 1.199204 | 0.529384 | 00:00 |
361 | 1.198991 | 0.534076 | 00:00 |
362 | 1.198778 | 0.529402 | 00:00 |
363 | 1.198565 | 0.536225 | 00:00 |
364 | 1.198352 | 0.531828 | 00:00 |
365 | 1.198140 | 0.536218 | 00:00 |
366 | 1.197927 | 0.537211 | 00:00 |
367 | 1.197714 | 0.535652 | 00:00 |
368 | 1.197502 | 0.542194 | 00:00 |
369 | 1.197290 | 0.534898 | 00:00 |
370 | 1.197079 | 0.546001 | 00:00 |
371 | 1.196868 | 0.534406 | 00:00 |
372 | 1.196657 | 0.546841 | 00:00 |
373 | 1.196448 | 0.538652 | 00:00 |
374 | 1.196237 | 0.543475 | 00:00 |
375 | 1.196027 | 0.545992 | 00:00 |
376 | 1.195816 | 0.540382 | 00:00 |
377 | 1.195607 | 0.551180 | 00:00 |
378 | 1.195398 | 0.543836 | 00:00 |
379 | 1.195188 | 0.549081 | 00:00 |
380 | 1.194979 | 0.552940 | 00:00 |
381 | 1.194771 | 0.546051 | 00:00 |
382 | 1.194563 | 0.556583 | 00:00 |
383 | 1.194356 | 0.547764 | 00:00 |
384 | 1.194149 | 0.554733 | 00:00 |
385 | 1.193941 | 0.554931 | 00:00 |
386 | 1.193734 | 0.551797 | 00:00 |
387 | 1.193528 | 0.559369 | 00:00 |
388 | 1.193321 | 0.554356 | 00:00 |
389 | 1.193116 | 0.557717 | 00:00 |
390 | 1.192910 | 0.559447 | 00:00 |
391 | 1.192706 | 0.555653 | 00:00 |
392 | 1.192500 | 0.563805 | 00:00 |
393 | 1.192295 | 0.556521 | 00:00 |
394 | 1.192092 | 0.564368 | 00:00 |
395 | 1.191887 | 0.561668 | 00:00 |
396 | 1.191683 | 0.560722 | 00:00 |
397 | 1.191478 | 0.567270 | 00:00 |
398 | 1.191274 | 0.559664 | 00:00 |
399 | 1.191071 | 0.569009 | 00:00 |
400 | 1.190868 | 0.563938 | 00:00 |
401 | 1.190666 | 0.567402 | 00:00 |
402 | 1.190463 | 0.573133 | 00:00 |
403 | 1.190261 | 0.566651 | 00:00 |
404 | 1.190060 | 0.576093 | 00:00 |
405 | 1.189860 | 0.567995 | 00:00 |
406 | 1.189659 | 0.571855 | 00:00 |
407 | 1.189458 | 0.574249 | 00:00 |
408 | 1.189258 | 0.569290 | 00:00 |
409 | 1.189058 | 0.579131 | 00:00 |
410 | 1.188859 | 0.572503 | 00:00 |
411 | 1.188658 | 0.578302 | 00:00 |
412 | 1.188460 | 0.576851 | 00:00 |
413 | 1.188261 | 0.573910 | 00:00 |
414 | 1.188061 | 0.581201 | 00:00 |
415 | 1.187863 | 0.573142 | 00:00 |
416 | 1.187665 | 0.583227 | 00:00 |
417 | 1.187467 | 0.580256 | 00:00 |
418 | 1.187269 | 0.582546 | 00:00 |
419 | 1.187071 | 0.586348 | 00:00 |
420 | 1.186874 | 0.579812 | 00:00 |
421 | 1.186677 | 0.589364 | 00:00 |
422 | 1.186480 | 0.580780 | 00:00 |
423 | 1.186284 | 0.589222 | 00:00 |
424 | 1.186088 | 0.587141 | 00:00 |
425 | 1.185891 | 0.589203 | 00:00 |
426 | 1.185696 | 0.591853 | 00:00 |
427 | 1.185501 | 0.588281 | 00:00 |
428 | 1.185305 | 0.593388 | 00:00 |
429 | 1.185110 | 0.589403 | 00:00 |
430 | 1.184916 | 0.595557 | 00:00 |
431 | 1.184721 | 0.592521 | 00:00 |
432 | 1.184529 | 0.601984 | 00:00 |
433 | 1.184336 | 0.594591 | 00:00 |
434 | 1.184142 | 0.605421 | 00:00 |
435 | 1.183950 | 0.596454 | 00:00 |
436 | 1.183757 | 0.604492 | 00:00 |
437 | 1.183564 | 0.599748 | 00:00 |
438 | 1.183372 | 0.601403 | 00:00 |
439 | 1.183180 | 0.605842 | 00:00 |
440 | 1.182988 | 0.603062 | 00:00 |
441 | 1.182797 | 0.611140 | 00:00 |
442 | 1.182606 | 0.604043 | 00:00 |
443 | 1.182416 | 0.611879 | 00:00 |
444 | 1.182226 | 0.604252 | 00:00 |
445 | 1.182036 | 0.611922 | 00:00 |
446 | 1.181846 | 0.607113 | 00:00 |
447 | 1.181655 | 0.612432 | 00:00 |
448 | 1.181467 | 0.613410 | 00:00 |
449 | 1.181278 | 0.613533 | 00:00 |
450 | 1.181088 | 0.619271 | 00:00 |
451 | 1.180901 | 0.614651 | 00:00 |
452 | 1.180712 | 0.623310 | 00:00 |
453 | 1.180524 | 0.613269 | 00:00 |
454 | 1.180337 | 0.624101 | 00:00 |
455 | 1.180150 | 0.612796 | 00:00 |
456 | 1.179964 | 0.625325 | 00:00 |
457 | 1.179777 | 0.617129 | 00:00 |
458 | 1.179590 | 0.625354 | 00:00 |
459 | 1.179404 | 0.621866 | 00:00 |
460 | 1.179218 | 0.624785 | 00:00 |
461 | 1.179033 | 0.626110 | 00:00 |
462 | 1.178848 | 0.625076 | 00:00 |
463 | 1.178664 | 0.628602 | 00:00 |
464 | 1.178480 | 0.628231 | 00:00 |
465 | 1.178295 | 0.629565 | 00:00 |
466 | 1.178110 | 0.634869 | 00:00 |
467 | 1.177927 | 0.628839 | 00:00 |
468 | 1.177743 | 0.639646 | 00:00 |
469 | 1.177561 | 0.628106 | 00:00 |
470 | 1.177379 | 0.642643 | 00:00 |
471 | 1.177198 | 0.626533 | 00:00 |
472 | 1.177018 | 0.645775 | 00:00 |
473 | 1.176837 | 0.630790 | 00:00 |
474 | 1.176656 | 0.645833 | 00:00 |
475 | 1.176476 | 0.639144 | 00:00 |
476 | 1.176294 | 0.642675 | 00:00 |
477 | 1.176114 | 0.644251 | 00:00 |
478 | 1.175933 | 0.639224 | 00:00 |
479 | 1.175753 | 0.646021 | 00:00 |
480 | 1.175574 | 0.638502 | 00:00 |
481 | 1.175395 | 0.648855 | 00:00 |
482 | 1.175216 | 0.641207 | 00:00 |
483 | 1.175039 | 0.651341 | 00:00 |
484 | 1.174861 | 0.647684 | 00:00 |
485 | 1.174683 | 0.652326 | 00:00 |
486 | 1.174505 | 0.653870 | 00:00 |
487 | 1.174329 | 0.649032 | 00:00 |
488 | 1.174153 | 0.655512 | 00:00 |
489 | 1.173977 | 0.649586 | 00:00 |
490 | 1.173801 | 0.654173 | 00:00 |
491 | 1.173624 | 0.652167 | 00:00 |
492 | 1.173448 | 0.655364 | 00:00 |
493 | 1.173273 | 0.656568 | 00:00 |
494 | 1.173098 | 0.658468 | 00:00 |
495 | 1.172923 | 0.660450 | 00:00 |
496 | 1.172747 | 0.658418 | 00:00 |
497 | 1.172574 | 0.664447 | 00:00 |
498 | 1.172400 | 0.655454 | 00:00 |
499 | 1.172228 | 0.666339 | 00:00 |
500 | 1.172055 | 0.654350 | 00:00 |
501 | 1.171883 | 0.667965 | 00:00 |
502 | 1.171710 | 0.660691 | 00:00 |
503 | 1.171538 | 0.666292 | 00:00 |
504 | 1.171365 | 0.669763 | 00:00 |
505 | 1.171193 | 0.661788 | 00:00 |
506 | 1.171022 | 0.676019 | 00:00 |
507 | 1.170852 | 0.656674 | 00:00 |
508 | 1.170684 | 0.678302 | 00:00 |
509 | 1.170515 | 0.661348 | 00:00 |
510 | 1.170346 | 0.669641 | 00:00 |
511 | 1.170176 | 0.674612 | 00:00 |
512 | 1.170005 | 0.663549 | 00:00 |
513 | 1.169838 | 0.679929 | 00:00 |
514 | 1.169668 | 0.670535 | 00:00 |
515 | 1.169498 | 0.671963 | 00:00 |
516 | 1.169330 | 0.680020 | 00:00 |
517 | 1.169162 | 0.665240 | 00:00 |
518 | 1.168995 | 0.679197 | 00:00 |
519 | 1.168829 | 0.670004 | 00:00 |
520 | 1.168662 | 0.674645 | 00:00 |
521 | 1.168495 | 0.675399 | 00:00 |
522 | 1.168327 | 0.675977 | 00:00 |
523 | 1.168159 | 0.680865 | 00:00 |
524 | 1.167992 | 0.681353 | 00:00 |
525 | 1.167827 | 0.680745 | 00:00 |
526 | 1.167661 | 0.685391 | 00:00 |
527 | 1.167495 | 0.679892 | 00:00 |
528 | 1.167331 | 0.687801 | 00:00 |
529 | 1.167167 | 0.679404 | 00:00 |
530 | 1.167005 | 0.689592 | 00:00 |
531 | 1.166840 | 0.682430 | 00:00 |
532 | 1.166679 | 0.689441 | 00:00 |
533 | 1.166516 | 0.686591 | 00:00 |
534 | 1.166354 | 0.690570 | 00:00 |
535 | 1.166191 | 0.690022 | 00:00 |
536 | 1.166030 | 0.688995 | 00:00 |
537 | 1.165868 | 0.695726 | 00:00 |
538 | 1.165707 | 0.692526 | 00:00 |
539 | 1.165547 | 0.702132 | 00:00 |
540 | 1.165386 | 0.699653 | 00:00 |
541 | 1.165227 | 0.706975 | 00:00 |
542 | 1.165067 | 0.704185 | 00:00 |
543 | 1.164908 | 0.705872 | 00:00 |
544 | 1.164748 | 0.704565 | 00:00 |
545 | 1.164590 | 0.697399 | 00:00 |
546 | 1.164433 | 0.709462 | 00:00 |
547 | 1.164274 | 0.692216 | 00:00 |
548 | 1.164118 | 0.717534 | 00:00 |
549 | 1.163962 | 0.695129 | 00:00 |
550 | 1.163807 | 0.712931 | 00:00 |
551 | 1.163651 | 0.705726 | 00:00 |
552 | 1.163493 | 0.702003 | 00:00 |
553 | 1.163336 | 0.710318 | 00:00 |
554 | 1.163179 | 0.698091 | 00:00 |
555 | 1.163025 | 0.711031 | 00:00 |
556 | 1.162869 | 0.706409 | 00:00 |
557 | 1.162713 | 0.713703 | 00:00 |
558 | 1.162558 | 0.719242 | 00:00 |
559 | 1.162403 | 0.711609 | 00:00 |
560 | 1.162249 | 0.724058 | 00:00 |
561 | 1.162096 | 0.712843 | 00:00 |
562 | 1.161943 | 0.721852 | 00:00 |
563 | 1.161789 | 0.718676 | 00:00 |
564 | 1.161636 | 0.721415 | 00:00 |
565 | 1.161484 | 0.720994 | 00:00 |
566 | 1.161332 | 0.720838 | 00:00 |
567 | 1.161180 | 0.723023 | 00:00 |
568 | 1.161029 | 0.721188 | 00:00 |
569 | 1.160877 | 0.723265 | 00:00 |
570 | 1.160725 | 0.724430 | 00:00 |
571 | 1.160574 | 0.727131 | 00:00 |
572 | 1.160422 | 0.727649 | 00:00 |
573 | 1.160273 | 0.728649 | 00:00 |
574 | 1.160122 | 0.727610 | 00:00 |
575 | 1.159973 | 0.728769 | 00:00 |
576 | 1.159824 | 0.731067 | 00:00 |
577 | 1.159676 | 0.734913 | 00:00 |
578 | 1.159526 | 0.735820 | 00:00 |
579 | 1.159379 | 0.737612 | 00:00 |
580 | 1.159229 | 0.735839 | 00:00 |
581 | 1.159080 | 0.735314 | 00:00 |
582 | 1.158932 | 0.733589 | 00:00 |
583 | 1.158784 | 0.735477 | 00:00 |
584 | 1.158638 | 0.732117 | 00:00 |
585 | 1.158491 | 0.737441 | 00:00 |
586 | 1.158345 | 0.734808 | 00:00 |
587 | 1.158200 | 0.743212 | 00:00 |
588 | 1.158056 | 0.740217 | 00:00 |
589 | 1.157910 | 0.746061 | 00:00 |
590 | 1.157764 | 0.745176 | 00:00 |
591 | 1.157619 | 0.745762 | 00:00 |
592 | 1.157475 | 0.744707 | 00:00 |
593 | 1.157332 | 0.742506 | 00:00 |
594 | 1.157188 | 0.748639 | 00:00 |
595 | 1.157044 | 0.740185 | 00:00 |
596 | 1.156901 | 0.757565 | 00:00 |
597 | 1.156759 | 0.736161 | 00:00 |
598 | 1.156619 | 0.771549 | 00:00 |
599 | 1.156482 | 0.735059 | 00:00 |
600 | 1.156345 | 0.769085 | 00:00 |
601 | 1.156207 | 0.750762 | 00:00 |
602 | 1.156066 | 0.744747 | 00:00 |
603 | 1.155928 | 0.774248 | 00:00 |
604 | 1.155791 | 0.742776 | 00:00 |
605 | 1.155653 | 0.764062 | 00:00 |
606 | 1.155515 | 0.768612 | 00:00 |
607 | 1.155378 | 0.745709 | 00:00 |
608 | 1.155242 | 0.772326 | 00:00 |
609 | 1.155105 | 0.762058 | 00:00 |
610 | 1.154967 | 0.749233 | 00:00 |
611 | 1.154831 | 0.768939 | 00:00 |
612 | 1.154693 | 0.753700 | 00:00 |
613 | 1.154555 | 0.754060 | 00:00 |
614 | 1.154418 | 0.769759 | 00:00 |
615 | 1.154282 | 0.756170 | 00:00 |
616 | 1.154146 | 0.766465 | 00:00 |
617 | 1.154011 | 0.772657 | 00:00 |
618 | 1.153876 | 0.769429 | 00:00 |
619 | 1.153741 | 0.771619 | 00:00 |
620 | 1.153608 | 0.770932 | 00:00 |
621 | 1.153476 | 0.768476 | 00:00 |
622 | 1.153342 | 0.770343 | 00:00 |
623 | 1.153209 | 0.768920 | 00:00 |
624 | 1.153077 | 0.772649 | 00:00 |
625 | 1.152945 | 0.773119 | 00:00 |
626 | 1.152812 | 0.771454 | 00:00 |
627 | 1.152680 | 0.778261 | 00:00 |
628 | 1.152548 | 0.776608 | 00:00 |
629 | 1.152418 | 0.773290 | 00:00 |
630 | 1.152286 | 0.780656 | 00:00 |
631 | 1.152156 | 0.775731 | 00:00 |
632 | 1.152025 | 0.779517 | 00:00 |
633 | 1.151896 | 0.778083 | 00:00 |
634 | 1.151767 | 0.775307 | 00:00 |
635 | 1.151638 | 0.782973 | 00:00 |
636 | 1.151511 | 0.772681 | 00:00 |
637 | 1.151383 | 0.786697 | 00:00 |
638 | 1.151256 | 0.781338 | 00:00 |
639 | 1.151129 | 0.779945 | 00:00 |
640 | 1.151001 | 0.796323 | 00:00 |
641 | 1.150876 | 0.779720 | 00:00 |
642 | 1.150750 | 0.793527 | 00:00 |
643 | 1.150625 | 0.792330 | 00:00 |
644 | 1.150499 | 0.773774 | 00:00 |
645 | 1.150375 | 0.800118 | 00:00 |
646 | 1.150253 | 0.781727 | 00:00 |
647 | 1.150127 | 0.789161 | 00:00 |
648 | 1.150002 | 0.807146 | 00:00 |
649 | 1.149879 | 0.785683 | 00:00 |
650 | 1.149758 | 0.801186 | 00:00 |
651 | 1.149637 | 0.799043 | 00:00 |
652 | 1.149514 | 0.784458 | 00:00 |
653 | 1.149392 | 0.804605 | 00:00 |
654 | 1.149269 | 0.793532 | 00:00 |
655 | 1.149148 | 0.788827 | 00:00 |
656 | 1.149027 | 0.810499 | 00:00 |
657 | 1.148907 | 0.784906 | 00:00 |
658 | 1.148789 | 0.797004 | 00:00 |
659 | 1.148669 | 0.808318 | 00:00 |
660 | 1.148550 | 0.790818 | 00:00 |
661 | 1.148430 | 0.807112 | 00:00 |
662 | 1.148311 | 0.807896 | 00:00 |
663 | 1.148192 | 0.793612 | 00:00 |
664 | 1.148074 | 0.814762 | 00:00 |
665 | 1.147955 | 0.803445 | 00:00 |
666 | 1.147837 | 0.797560 | 00:00 |
667 | 1.147718 | 0.811713 | 00:00 |
668 | 1.147601 | 0.799508 | 00:00 |
669 | 1.147484 | 0.799374 | 00:00 |
670 | 1.147368 | 0.814020 | 00:00 |
671 | 1.147251 | 0.808156 | 00:00 |
672 | 1.147136 | 0.812753 | 00:00 |
673 | 1.147021 | 0.819477 | 00:00 |
674 | 1.146906 | 0.804505 | 00:00 |
675 | 1.146790 | 0.817322 | 00:00 |
676 | 1.146675 | 0.806367 | 00:00 |
677 | 1.146561 | 0.804483 | 00:00 |
678 | 1.146447 | 0.817632 | 00:00 |
679 | 1.146334 | 0.804266 | 00:00 |
680 | 1.146220 | 0.818144 | 00:00 |
681 | 1.146108 | 0.816939 | 00:00 |
682 | 1.145994 | 0.809324 | 00:00 |
683 | 1.145882 | 0.824353 | 00:00 |
684 | 1.145771 | 0.814552 | 00:00 |
685 | 1.145658 | 0.812293 | 00:00 |
686 | 1.145546 | 0.823278 | 00:00 |
687 | 1.145435 | 0.812532 | 00:00 |
688 | 1.145323 | 0.817525 | 00:00 |
689 | 1.145211 | 0.820862 | 00:00 |
690 | 1.145103 | 0.814268 | 00:00 |
691 | 1.144992 | 0.826711 | 00:00 |
692 | 1.144881 | 0.825731 | 00:00 |
693 | 1.144772 | 0.825377 | 00:00 |
694 | 1.144664 | 0.831147 | 00:00 |
695 | 1.144554 | 0.825554 | 00:00 |
696 | 1.144444 | 0.822579 | 00:00 |
697 | 1.144335 | 0.827216 | 00:00 |
698 | 1.144226 | 0.818370 | 00:00 |
699 | 1.144118 | 0.824985 | 00:00 |
700 | 1.144011 | 0.827606 | 00:00 |
701 | 1.143903 | 0.825293 | 00:00 |
702 | 1.143797 | 0.824510 | 00:00 |
703 | 1.143687 | 0.831842 | 00:00 |
704 | 1.143579 | 0.819512 | 00:00 |
705 | 1.143472 | 0.831834 | 00:00 |
706 | 1.143366 | 0.830589 | 00:00 |
707 | 1.143260 | 0.823436 | 00:00 |
708 | 1.143155 | 0.841350 | 00:00 |
709 | 1.143051 | 0.821013 | 00:00 |
710 | 1.142948 | 0.841491 | 00:00 |
711 | 1.142844 | 0.833130 | 00:00 |
712 | 1.142738 | 0.830558 | 00:00 |
713 | 1.142634 | 0.839617 | 00:00 |
714 | 1.142530 | 0.829297 | 00:00 |
715 | 1.142426 | 0.832571 | 00:00 |
716 | 1.142321 | 0.838219 | 00:00 |
717 | 1.142219 | 0.824259 | 00:00 |
718 | 1.142117 | 0.849616 | 00:00 |
719 | 1.142013 | 0.829544 | 00:00 |
720 | 1.141912 | 0.837785 | 00:00 |
721 | 1.141808 | 0.839404 | 00:00 |
722 | 1.141706 | 0.824520 | 00:00 |
723 | 1.141604 | 0.850135 | 00:00 |
724 | 1.141504 | 0.831047 | 00:00 |
725 | 1.141403 | 0.846186 | 00:00 |
726 | 1.141299 | 0.846048 | 00:00 |
727 | 1.141198 | 0.837446 | 00:00 |
728 | 1.141097 | 0.848955 | 00:00 |
729 | 1.140998 | 0.837740 | 00:00 |
730 | 1.140897 | 0.840581 | 00:00 |
731 | 1.140797 | 0.843217 | 00:00 |
732 | 1.140696 | 0.836666 | 00:00 |
733 | 1.140596 | 0.849162 | 00:00 |
734 | 1.140497 | 0.838051 | 00:00 |
735 | 1.140396 | 0.845237 | 00:00 |
736 | 1.140297 | 0.843339 | 00:00 |
737 | 1.140200 | 0.846230 | 00:00 |
738 | 1.140100 | 0.844921 | 00:00 |
739 | 1.140002 | 0.848239 | 00:00 |
740 | 1.139903 | 0.843349 | 00:00 |
741 | 1.139805 | 0.852105 | 00:00 |
742 | 1.139708 | 0.842042 | 00:00 |
743 | 1.139609 | 0.856012 | 00:00 |
744 | 1.139512 | 0.842623 | 00:00 |
745 | 1.139416 | 0.848598 | 00:00 |
746 | 1.139319 | 0.849762 | 00:00 |
747 | 1.139220 | 0.843101 | 00:00 |
748 | 1.139124 | 0.856936 | 00:00 |
749 | 1.139028 | 0.850956 | 00:00 |
750 | 1.138933 | 0.857461 | 00:00 |
751 | 1.138837 | 0.850585 | 00:00 |
752 | 1.138741 | 0.859319 | 00:00 |
753 | 1.138645 | 0.847639 | 00:00 |
754 | 1.138551 | 0.863867 | 00:00 |
755 | 1.138455 | 0.844789 | 00:00 |
756 | 1.138359 | 0.864412 | 00:00 |
757 | 1.138262 | 0.849402 | 00:00 |
758 | 1.138168 | 0.854914 | 00:00 |
759 | 1.138074 | 0.858879 | 00:00 |
760 | 1.137979 | 0.853253 | 00:00 |
761 | 1.137886 | 0.868428 | 00:00 |
762 | 1.137792 | 0.849593 | 00:00 |
763 | 1.137699 | 0.869901 | 00:00 |
764 | 1.137607 | 0.850486 | 00:00 |
765 | 1.137514 | 0.863039 | 00:00 |
766 | 1.137419 | 0.854652 | 00:00 |
767 | 1.137325 | 0.856614 | 00:00 |
768 | 1.137231 | 0.861490 | 00:00 |
769 | 1.137138 | 0.855539 | 00:00 |
770 | 1.137045 | 0.865625 | 00:00 |
771 | 1.136952 | 0.858192 | 00:00 |
772 | 1.136857 | 0.865162 | 00:00 |
773 | 1.136762 | 0.862942 | 00:00 |
774 | 1.136669 | 0.863200 | 00:00 |
775 | 1.136577 | 0.866388 | 00:00 |
776 | 1.136485 | 0.860678 | 00:00 |
777 | 1.136392 | 0.864243 | 00:00 |
778 | 1.136300 | 0.855608 | 00:00 |
779 | 1.136209 | 0.864398 | 00:00 |
780 | 1.136120 | 0.860409 | 00:00 |
781 | 1.136030 | 0.872384 | 00:00 |
782 | 1.135939 | 0.862076 | 00:00 |
783 | 1.135848 | 0.874728 | 00:00 |
784 | 1.135755 | 0.861477 | 00:00 |
785 | 1.135663 | 0.874420 | 00:00 |
786 | 1.135571 | 0.861232 | 00:00 |
787 | 1.135479 | 0.870913 | 00:00 |
788 | 1.135388 | 0.868093 | 00:00 |
789 | 1.135296 | 0.875822 | 00:00 |
790 | 1.135203 | 0.873967 | 00:00 |
791 | 1.135110 | 0.871325 | 00:00 |
792 | 1.135015 | 0.876681 | 00:00 |
793 | 1.134925 | 0.859543 | 00:00 |
794 | 1.134835 | 0.879577 | 00:00 |
795 | 1.134743 | 0.864079 | 00:00 |
796 | 1.134653 | 0.892693 | 00:00 |
797 | 1.134563 | 0.860914 | 00:00 |
798 | 1.134474 | 0.892006 | 00:00 |
799 | 1.134385 | 0.854810 | 00:00 |
800 | 1.134295 | 0.877297 | 00:00 |
801 | 1.134205 | 0.867235 | 00:00 |
802 | 1.134112 | 0.863984 | 00:00 |
803 | 1.134019 | 0.879986 | 00:00 |
804 | 1.133928 | 0.861217 | 00:00 |
805 | 1.133838 | 0.876992 | 00:00 |
806 | 1.133745 | 0.869224 | 00:00 |
807 | 1.133653 | 0.869163 | 00:00 |
808 | 1.133562 | 0.874003 | 00:00 |
809 | 1.133471 | 0.865148 | 00:00 |
810 | 1.133381 | 0.873356 | 00:00 |
811 | 1.133292 | 0.863060 | 00:00 |
812 | 1.133201 | 0.868399 | 00:00 |
813 | 1.133111 | 0.864882 | 00:00 |
814 | 1.133021 | 0.867160 | 00:00 |
815 | 1.132932 | 0.865521 | 00:00 |
816 | 1.132843 | 0.873941 | 00:00 |
817 | 1.132755 | 0.860558 | 00:00 |
818 | 1.132668 | 0.879268 | 00:00 |
819 | 1.132582 | 0.852869 | 00:00 |
820 | 1.132495 | 0.872444 | 00:00 |
821 | 1.132408 | 0.855299 | 00:00 |
822 | 1.132323 | 0.862534 | 00:00 |
823 | 1.132236 | 0.872384 | 00:00 |
824 | 1.132149 | 0.853979 | 00:00 |
825 | 1.132063 | 0.873976 | 00:00 |
826 | 1.131977 | 0.853876 | 00:00 |
827 | 1.131892 | 0.866198 | 00:00 |
828 | 1.131807 | 0.870824 | 00:00 |
829 | 1.131720 | 0.854757 | 00:00 |
830 | 1.131633 | 0.873532 | 00:00 |
831 | 1.131549 | 0.853658 | 00:00 |
832 | 1.131464 | 0.869641 | 00:00 |
833 | 1.131376 | 0.863078 | 00:00 |
834 | 1.131289 | 0.861533 | 00:00 |
835 | 1.131203 | 0.870369 | 00:00 |
836 | 1.131117 | 0.859380 | 00:00 |
837 | 1.131034 | 0.858565 | 00:00 |
838 | 1.130949 | 0.868208 | 00:00 |
839 | 1.130866 | 0.854680 | 00:00 |
840 | 1.130783 | 0.874185 | 00:00 |
841 | 1.130700 | 0.859076 | 00:00 |
842 | 1.130616 | 0.863381 | 00:00 |
843 | 1.130533 | 0.857904 | 00:00 |
844 | 1.130450 | 0.857336 | 00:00 |
845 | 1.130367 | 0.860589 | 00:00 |
846 | 1.130286 | 0.871394 | 00:00 |
847 | 1.130202 | 0.852711 | 00:00 |
848 | 1.130119 | 0.870563 | 00:00 |
849 | 1.130038 | 0.847779 | 00:00 |
850 | 1.129956 | 0.860374 | 00:00 |
851 | 1.129876 | 0.857340 | 00:00 |
852 | 1.129794 | 0.850603 | 00:00 |
853 | 1.129714 | 0.864460 | 00:00 |
854 | 1.129635 | 0.854669 | 00:00 |
855 | 1.129553 | 0.858434 | 00:00 |
856 | 1.129472 | 0.864192 | 00:00 |
857 | 1.129392 | 0.849015 | 00:00 |
858 | 1.129312 | 0.867516 | 00:00 |
859 | 1.129233 | 0.842211 | 00:00 |
860 | 1.129155 | 0.862945 | 00:00 |
861 | 1.129078 | 0.853798 | 00:00 |
862 | 1.128999 | 0.858534 | 00:00 |
863 | 1.128921 | 0.859560 | 00:00 |
864 | 1.128842 | 0.857198 | 00:00 |
865 | 1.128763 | 0.857788 | 00:00 |
866 | 1.128684 | 0.856849 | 00:00 |
867 | 1.128606 | 0.854766 | 00:00 |
868 | 1.128528 | 0.859631 | 00:00 |
869 | 1.128451 | 0.860161 | 00:00 |
870 | 1.128372 | 0.853523 | 00:00 |
871 | 1.128294 | 0.858132 | 00:00 |
872 | 1.128217 | 0.848801 | 00:00 |
873 | 1.128139 | 0.858670 | 00:00 |
874 | 1.128064 | 0.853983 | 00:00 |
875 | 1.127988 | 0.858677 | 00:00 |
876 | 1.127911 | 0.857006 | 00:00 |
877 | 1.127835 | 0.849795 | 00:00 |
878 | 1.127759 | 0.854704 | 00:00 |
879 | 1.127682 | 0.848892 | 00:00 |
880 | 1.127607 | 0.855406 | 00:00 |
881 | 1.127532 | 0.850048 | 00:00 |
882 | 1.127455 | 0.848791 | 00:00 |
883 | 1.127379 | 0.853477 | 00:00 |
884 | 1.127305 | 0.840029 | 00:00 |
885 | 1.127230 | 0.868410 | 00:00 |
886 | 1.127156 | 0.831517 | 00:00 |
887 | 1.127086 | 0.881237 | 00:00 |
888 | 1.127015 | 0.835450 | 00:00 |
889 | 1.126945 | 0.856970 | 00:00 |
890 | 1.126871 | 0.860736 | 00:00 |
891 | 1.126796 | 0.829224 | 00:00 |
892 | 1.126725 | 0.863013 | 00:00 |
893 | 1.126655 | 0.850852 | 00:00 |
894 | 1.126581 | 0.837041 | 00:00 |
895 | 1.126509 | 0.864583 | 00:00 |
896 | 1.126438 | 0.842915 | 00:00 |
897 | 1.126366 | 0.838824 | 00:00 |
898 | 1.126293 | 0.864659 | 00:00 |
899 | 1.126220 | 0.842312 | 00:00 |
900 | 1.126149 | 0.850549 | 00:00 |
901 | 1.126076 | 0.860747 | 00:00 |
902 | 1.126004 | 0.835979 | 00:00 |
903 | 1.125931 | 0.847959 | 00:00 |
904 | 1.125860 | 0.851000 | 00:00 |
905 | 1.125789 | 0.836149 | 00:00 |
906 | 1.125719 | 0.850032 | 00:00 |
907 | 1.125648 | 0.847336 | 00:00 |
908 | 1.125576 | 0.837743 | 00:00 |
909 | 1.125505 | 0.852608 | 00:00 |
910 | 1.125436 | 0.846568 | 00:00 |
911 | 1.125366 | 0.840082 | 00:00 |
912 | 1.125297 | 0.852738 | 00:00 |
913 | 1.125231 | 0.839086 | 00:00 |
914 | 1.125161 | 0.844776 | 00:00 |
915 | 1.125091 | 0.853013 | 00:00 |
916 | 1.125024 | 0.843607 | 00:00 |
917 | 1.124954 | 0.843370 | 00:00 |
918 | 1.124885 | 0.851984 | 00:00 |
919 | 1.124818 | 0.830260 | 00:00 |
920 | 1.124753 | 0.848803 | 00:00 |
921 | 1.124686 | 0.848179 | 00:00 |
922 | 1.124618 | 0.836883 | 00:00 |
923 | 1.124550 | 0.853833 | 00:00 |
924 | 1.124483 | 0.839324 | 00:00 |
925 | 1.124419 | 0.841535 | 00:00 |
926 | 1.124353 | 0.842931 | 00:00 |
927 | 1.124289 | 0.841324 | 00:00 |
928 | 1.124222 | 0.846839 | 00:00 |
929 | 1.124154 | 0.843471 | 00:00 |
930 | 1.124089 | 0.840840 | 00:00 |
931 | 1.124022 | 0.841792 | 00:00 |
932 | 1.123956 | 0.837194 | 00:00 |
933 | 1.123891 | 0.837308 | 00:00 |
934 | 1.123827 | 0.844652 | 00:00 |
935 | 1.123760 | 0.842046 | 00:00 |
936 | 1.123690 | 0.852645 | 00:00 |
937 | 1.123624 | 0.837106 | 00:00 |
938 | 1.123557 | 0.836191 | 00:00 |
939 | 1.123491 | 0.839347 | 00:00 |
940 | 1.123427 | 0.828554 | 00:00 |
941 | 1.123361 | 0.846440 | 00:00 |
942 | 1.123297 | 0.841281 | 00:00 |
943 | 1.123232 | 0.845126 | 00:00 |
944 | 1.123168 | 0.840104 | 00:00 |
945 | 1.123103 | 0.833093 | 00:00 |
946 | 1.123038 | 0.829462 | 00:00 |
947 | 1.122975 | 0.839022 | 00:00 |
948 | 1.122910 | 0.827858 | 00:00 |
949 | 1.122847 | 0.844970 | 00:00 |
950 | 1.122783 | 0.829865 | 00:00 |
951 | 1.122721 | 0.845319 | 00:00 |
952 | 1.122656 | 0.830022 | 00:00 |
953 | 1.122593 | 0.832491 | 00:00 |
954 | 1.122528 | 0.837621 | 00:00 |
955 | 1.122462 | 0.820146 | 00:00 |
956 | 1.122397 | 0.844777 | 00:00 |
957 | 1.122334 | 0.825796 | 00:00 |
958 | 1.122272 | 0.832674 | 00:00 |
959 | 1.122209 | 0.835724 | 00:00 |
960 | 1.122144 | 0.825456 | 00:00 |
961 | 1.122078 | 0.841224 | 00:00 |
962 | 1.122014 | 0.825974 | 00:00 |
963 | 1.121951 | 0.840021 | 00:00 |
964 | 1.121888 | 0.831758 | 00:00 |
965 | 1.121823 | 0.819274 | 00:00 |
966 | 1.121762 | 0.837447 | 00:00 |
967 | 1.121698 | 0.819602 | 00:00 |
968 | 1.121633 | 0.839202 | 00:00 |
969 | 1.121570 | 0.825377 | 00:00 |
970 | 1.121507 | 0.825362 | 00:00 |
971 | 1.121445 | 0.832869 | 00:00 |
972 | 1.121384 | 0.808087 | 00:00 |
973 | 1.121323 | 0.836934 | 00:00 |
974 | 1.121263 | 0.815343 | 00:00 |
975 | 1.121203 | 0.829066 | 00:00 |
976 | 1.121140 | 0.831464 | 00:00 |
977 | 1.121077 | 0.821343 | 00:00 |
978 | 1.121016 | 0.826258 | 00:00 |
979 | 1.120953 | 0.824040 | 00:00 |
980 | 1.120890 | 0.817167 | 00:00 |
981 | 1.120829 | 0.835620 | 00:00 |
982 | 1.120770 | 0.811536 | 00:00 |
983 | 1.120709 | 0.825223 | 00:00 |
984 | 1.120647 | 0.814452 | 00:00 |
985 | 1.120587 | 0.812379 | 00:00 |
986 | 1.120528 | 0.823268 | 00:00 |
987 | 1.120465 | 0.808463 | 00:00 |
988 | 1.120403 | 0.828295 | 00:00 |
989 | 1.120343 | 0.814847 | 00:00 |
990 | 1.120281 | 0.814448 | 00:00 |
991 | 1.120219 | 0.820980 | 00:00 |
992 | 1.120160 | 0.804554 | 00:00 |
993 | 1.120100 | 0.824731 | 00:00 |
994 | 1.120041 | 0.805505 | 00:00 |
995 | 1.119982 | 0.818074 | 00:00 |
996 | 1.119921 | 0.816324 | 00:00 |
997 | 1.119859 | 0.806917 | 00:00 |
998 | 1.119800 | 0.816600 | 00:00 |
999 | 1.119738 | 0.805386 | 00:00 |
-
loss들도 에폭별로 기록되어 있음
lrnr.recorder.plot_loss()
-
net_fastai에도 파라메터가 업데이트 되어있음
# list(net_fastai.parameters())
- 리스트를 확인해보면 net_fastai 의 파라메터가 알아서 GPU로 옮겨져서 학습됨.
-
플랏
net_fastai.to("cpu")
plt.plot(X,y,'.')
plt.plot(X_tr,net_fastai(X_tr).data)
plt.plot(X_val,net_fastai(X_val).data)
[<matplotlib.lines.Line2D at 0x7f6e97599790>]
-
네트워크 설계 (드랍아웃 추가)
torch.manual_seed(1)
net_fastai = torch.nn.Sequential(
torch.nn.Linear(in_features=1, out_features=512),
torch.nn.ReLU(),
torch.nn.Dropout(0.8),
torch.nn.Linear(in_features=512, out_features=1))
#optimizer
loss_fn=torch.nn.MSELoss()
-
러너오브젝트 (for문 대신돌려주는 오브젝트)
lrnr= Learner(dls,net_fastai,opt_func=Adam,loss_func=loss_fn)
-
에폭만 설정하고 바로 학습
lrnr.fit(1000)
epoch | train_loss | valid_loss | time |
---|---|---|---|
0 | 1.585653 | 0.428918 | 00:00 |
1 | 1.552326 | 0.434847 | 00:00 |
2 | 1.568810 | 0.442775 | 00:00 |
3 | 1.543528 | 0.449585 | 00:00 |
4 | 1.562597 | 0.456666 | 00:00 |
5 | 1.523623 | 0.459943 | 00:00 |
6 | 1.506816 | 0.458130 | 00:00 |
7 | 1.510407 | 0.455353 | 00:00 |
8 | 1.532602 | 0.449054 | 00:00 |
9 | 1.528153 | 0.445443 | 00:00 |
10 | 1.518390 | 0.442207 | 00:00 |
11 | 1.508012 | 0.442086 | 00:00 |
12 | 1.498026 | 0.443293 | 00:00 |
13 | 1.502874 | 0.444508 | 00:00 |
14 | 1.502828 | 0.445713 | 00:00 |
15 | 1.496831 | 0.446047 | 00:00 |
16 | 1.483070 | 0.447462 | 00:00 |
17 | 1.496551 | 0.449803 | 00:00 |
18 | 1.482904 | 0.450663 | 00:00 |
19 | 1.471269 | 0.453689 | 00:00 |
20 | 1.467480 | 0.456816 | 00:00 |
21 | 1.457825 | 0.460537 | 00:00 |
22 | 1.450724 | 0.463197 | 00:00 |
23 | 1.445010 | 0.466199 | 00:00 |
24 | 1.441184 | 0.471516 | 00:00 |
25 | 1.436977 | 0.474600 | 00:00 |
26 | 1.431098 | 0.476256 | 00:00 |
27 | 1.423327 | 0.478671 | 00:00 |
28 | 1.416092 | 0.479825 | 00:00 |
29 | 1.414993 | 0.478338 | 00:00 |
30 | 1.421260 | 0.477377 | 00:00 |
31 | 1.413346 | 0.474661 | 00:00 |
32 | 1.417670 | 0.470384 | 00:00 |
33 | 1.412011 | 0.468277 | 00:00 |
34 | 1.414570 | 0.465151 | 00:00 |
35 | 1.416442 | 0.461778 | 00:00 |
36 | 1.410454 | 0.457763 | 00:00 |
37 | 1.405844 | 0.453920 | 00:00 |
38 | 1.405701 | 0.451884 | 00:00 |
39 | 1.405358 | 0.450063 | 00:00 |
40 | 1.402212 | 0.449002 | 00:00 |
41 | 1.403139 | 0.450335 | 00:00 |
42 | 1.403911 | 0.450523 | 00:00 |
43 | 1.397601 | 0.453860 | 00:00 |
44 | 1.399249 | 0.456292 | 00:00 |
45 | 1.395007 | 0.460008 | 00:00 |
46 | 1.391067 | 0.464115 | 00:00 |
47 | 1.387260 | 0.471899 | 00:00 |
48 | 1.390660 | 0.477962 | 00:00 |
49 | 1.391881 | 0.484811 | 00:00 |
50 | 1.390658 | 0.491120 | 00:00 |
51 | 1.390670 | 0.495985 | 00:00 |
52 | 1.391075 | 0.500300 | 00:00 |
53 | 1.392950 | 0.502631 | 00:00 |
54 | 1.394412 | 0.507397 | 00:00 |
55 | 1.393165 | 0.511569 | 00:00 |
56 | 1.392622 | 0.511544 | 00:00 |
57 | 1.388416 | 0.510609 | 00:00 |
58 | 1.389699 | 0.505464 | 00:00 |
59 | 1.388712 | 0.501359 | 00:00 |
60 | 1.390845 | 0.493002 | 00:00 |
61 | 1.389795 | 0.485509 | 00:00 |
62 | 1.388309 | 0.479296 | 00:00 |
63 | 1.385704 | 0.473247 | 00:00 |
64 | 1.381633 | 0.470756 | 00:00 |
65 | 1.379894 | 0.468657 | 00:00 |
66 | 1.377811 | 0.466901 | 00:00 |
67 | 1.373864 | 0.466839 | 00:00 |
68 | 1.373379 | 0.467094 | 00:00 |
69 | 1.373237 | 0.469634 | 00:00 |
70 | 1.371915 | 0.471138 | 00:00 |
71 | 1.374786 | 0.473315 | 00:00 |
72 | 1.375253 | 0.477511 | 00:00 |
73 | 1.373597 | 0.482231 | 00:00 |
74 | 1.370517 | 0.486836 | 00:00 |
75 | 1.368542 | 0.490195 | 00:00 |
76 | 1.366800 | 0.491340 | 00:00 |
77 | 1.365475 | 0.493011 | 00:00 |
78 | 1.364186 | 0.492646 | 00:00 |
79 | 1.362411 | 0.491744 | 00:00 |
80 | 1.363654 | 0.490551 | 00:00 |
81 | 1.364646 | 0.486897 | 00:00 |
82 | 1.363839 | 0.484334 | 00:00 |
83 | 1.360841 | 0.483685 | 00:00 |
84 | 1.357780 | 0.482620 | 00:00 |
85 | 1.354387 | 0.482355 | 00:00 |
86 | 1.354743 | 0.480981 | 00:00 |
87 | 1.352487 | 0.480221 | 00:00 |
88 | 1.350849 | 0.480390 | 00:00 |
89 | 1.347193 | 0.481674 | 00:00 |
90 | 1.348291 | 0.482961 | 00:00 |
91 | 1.348093 | 0.484509 | 00:00 |
92 | 1.349149 | 0.485349 | 00:00 |
93 | 1.347975 | 0.486714 | 00:00 |
94 | 1.348029 | 0.487455 | 00:00 |
95 | 1.347019 | 0.487787 | 00:00 |
96 | 1.347150 | 0.488614 | 00:00 |
97 | 1.346721 | 0.488363 | 00:00 |
98 | 1.346410 | 0.488697 | 00:00 |
99 | 1.344512 | 0.487400 | 00:00 |
100 | 1.342906 | 0.484375 | 00:00 |
101 | 1.342780 | 0.481898 | 00:00 |
102 | 1.341344 | 0.479472 | 00:00 |
103 | 1.341765 | 0.476342 | 00:00 |
104 | 1.342349 | 0.473114 | 00:00 |
105 | 1.340648 | 0.469774 | 00:00 |
106 | 1.338787 | 0.466538 | 00:00 |
107 | 1.337694 | 0.463039 | 00:00 |
108 | 1.336146 | 0.461036 | 00:00 |
109 | 1.335181 | 0.460885 | 00:00 |
110 | 1.335002 | 0.460633 | 00:00 |
111 | 1.333601 | 0.460474 | 00:00 |
112 | 1.332647 | 0.459493 | 00:00 |
113 | 1.332113 | 0.458576 | 00:00 |
114 | 1.331091 | 0.458245 | 00:00 |
115 | 1.331055 | 0.457598 | 00:00 |
116 | 1.329440 | 0.457297 | 00:00 |
117 | 1.329174 | 0.458239 | 00:00 |
118 | 1.328747 | 0.459092 | 00:00 |
119 | 1.328131 | 0.459786 | 00:00 |
120 | 1.327026 | 0.460401 | 00:00 |
121 | 1.324988 | 0.461529 | 00:00 |
122 | 1.325732 | 0.463060 | 00:00 |
123 | 1.324014 | 0.464970 | 00:00 |
124 | 1.324666 | 0.467042 | 00:00 |
125 | 1.323317 | 0.467260 | 00:00 |
126 | 1.321263 | 0.467520 | 00:00 |
127 | 1.321853 | 0.467667 | 00:00 |
128 | 1.319355 | 0.468604 | 00:00 |
129 | 1.318295 | 0.468806 | 00:00 |
130 | 1.319103 | 0.469363 | 00:00 |
131 | 1.318806 | 0.469256 | 00:00 |
132 | 1.319240 | 0.468360 | 00:00 |
133 | 1.319684 | 0.467827 | 00:00 |
134 | 1.319690 | 0.467868 | 00:00 |
135 | 1.318426 | 0.467066 | 00:00 |
136 | 1.318111 | 0.466023 | 00:00 |
137 | 1.319230 | 0.463543 | 00:00 |
138 | 1.319114 | 0.460140 | 00:00 |
139 | 1.317928 | 0.457014 | 00:00 |
140 | 1.317386 | 0.454275 | 00:00 |
141 | 1.317327 | 0.451683 | 00:00 |
142 | 1.314812 | 0.450069 | 00:00 |
143 | 1.314484 | 0.448842 | 00:00 |
144 | 1.314361 | 0.448207 | 00:00 |
145 | 1.312965 | 0.447664 | 00:00 |
146 | 1.312361 | 0.447536 | 00:00 |
147 | 1.310588 | 0.447214 | 00:00 |
148 | 1.311692 | 0.446319 | 00:00 |
149 | 1.309162 | 0.445097 | 00:00 |
150 | 1.308690 | 0.443991 | 00:00 |
151 | 1.309653 | 0.444124 | 00:00 |
152 | 1.308728 | 0.444485 | 00:00 |
153 | 1.309734 | 0.446062 | 00:00 |
154 | 1.309190 | 0.447515 | 00:00 |
155 | 1.310401 | 0.448601 | 00:00 |
156 | 1.310624 | 0.449225 | 00:00 |
157 | 1.311330 | 0.450946 | 00:00 |
158 | 1.311746 | 0.452627 | 00:00 |
159 | 1.311103 | 0.454660 | 00:00 |
160 | 1.310514 | 0.455949 | 00:00 |
161 | 1.311919 | 0.455852 | 00:00 |
162 | 1.312855 | 0.454658 | 00:00 |
163 | 1.313069 | 0.454663 | 00:00 |
164 | 1.311808 | 0.454568 | 00:00 |
165 | 1.310780 | 0.455139 | 00:00 |
166 | 1.310751 | 0.455698 | 00:00 |
167 | 1.310131 | 0.456399 | 00:00 |
168 | 1.310501 | 0.457548 | 00:00 |
169 | 1.308650 | 0.458662 | 00:00 |
170 | 1.307447 | 0.458368 | 00:00 |
171 | 1.306210 | 0.458754 | 00:00 |
172 | 1.306657 | 0.459125 | 00:00 |
173 | 1.305704 | 0.459026 | 00:00 |
174 | 1.305946 | 0.458391 | 00:00 |
175 | 1.305129 | 0.457954 | 00:00 |
176 | 1.305813 | 0.457656 | 00:00 |
177 | 1.304454 | 0.456099 | 00:00 |
178 | 1.304170 | 0.454567 | 00:00 |
179 | 1.303862 | 0.452808 | 00:00 |
180 | 1.303645 | 0.450852 | 00:00 |
181 | 1.304117 | 0.449986 | 00:00 |
182 | 1.306056 | 0.450320 | 00:00 |
183 | 1.306082 | 0.451507 | 00:00 |
184 | 1.306572 | 0.453438 | 00:00 |
185 | 1.307314 | 0.454431 | 00:00 |
186 | 1.307979 | 0.455223 | 00:00 |
187 | 1.308226 | 0.455543 | 00:00 |
188 | 1.307733 | 0.454571 | 00:00 |
189 | 1.306858 | 0.452855 | 00:00 |
190 | 1.306951 | 0.451105 | 00:00 |
191 | 1.307192 | 0.448794 | 00:00 |
192 | 1.306901 | 0.447157 | 00:00 |
193 | 1.306474 | 0.445820 | 00:00 |
194 | 1.306584 | 0.444357 | 00:00 |
195 | 1.305671 | 0.443530 | 00:00 |
196 | 1.305142 | 0.442438 | 00:00 |
197 | 1.305862 | 0.442103 | 00:00 |
198 | 1.305954 | 0.442020 | 00:00 |
199 | 1.306188 | 0.443073 | 00:00 |
200 | 1.305721 | 0.444795 | 00:00 |
201 | 1.304766 | 0.447127 | 00:00 |
202 | 1.304900 | 0.449381 | 00:00 |
203 | 1.304818 | 0.451541 | 00:00 |
204 | 1.303382 | 0.454321 | 00:00 |
205 | 1.303250 | 0.456620 | 00:00 |
206 | 1.301603 | 0.458452 | 00:00 |
207 | 1.300827 | 0.460165 | 00:00 |
208 | 1.300216 | 0.461326 | 00:00 |
209 | 1.299984 | 0.461125 | 00:00 |
210 | 1.299863 | 0.460487 | 00:00 |
211 | 1.299613 | 0.460132 | 00:00 |
212 | 1.298147 | 0.458775 | 00:00 |
213 | 1.297861 | 0.457812 | 00:00 |
214 | 1.297246 | 0.457525 | 00:00 |
215 | 1.297409 | 0.457489 | 00:00 |
216 | 1.296456 | 0.457481 | 00:00 |
217 | 1.295172 | 0.457752 | 00:00 |
218 | 1.294975 | 0.457882 | 00:00 |
219 | 1.295359 | 0.458115 | 00:00 |
220 | 1.295161 | 0.458298 | 00:00 |
221 | 1.295173 | 0.458718 | 00:00 |
222 | 1.294700 | 0.458995 | 00:00 |
223 | 1.294092 | 0.459594 | 00:00 |
224 | 1.294339 | 0.459755 | 00:00 |
225 | 1.294004 | 0.460028 | 00:00 |
226 | 1.293507 | 0.460291 | 00:00 |
227 | 1.293260 | 0.459926 | 00:00 |
228 | 1.293112 | 0.460015 | 00:00 |
229 | 1.293474 | 0.462001 | 00:00 |
230 | 1.293882 | 0.463123 | 00:00 |
231 | 1.293100 | 0.463192 | 00:00 |
232 | 1.294397 | 0.460964 | 00:00 |
233 | 1.293472 | 0.458559 | 00:00 |
234 | 1.292968 | 0.456203 | 00:00 |
235 | 1.291682 | 0.453646 | 00:00 |
236 | 1.290647 | 0.450848 | 00:00 |
237 | 1.290732 | 0.448872 | 00:00 |
238 | 1.291056 | 0.448222 | 00:00 |
239 | 1.291046 | 0.448295 | 00:00 |
240 | 1.290196 | 0.448293 | 00:00 |
241 | 1.290132 | 0.447221 | 00:00 |
242 | 1.290471 | 0.447136 | 00:00 |
243 | 1.290599 | 0.447810 | 00:00 |
244 | 1.291708 | 0.449028 | 00:00 |
245 | 1.291515 | 0.449940 | 00:00 |
246 | 1.292217 | 0.451628 | 00:00 |
247 | 1.292809 | 0.453637 | 00:00 |
248 | 1.291820 | 0.456249 | 00:00 |
249 | 1.290426 | 0.458512 | 00:00 |
250 | 1.289343 | 0.460048 | 00:00 |
251 | 1.289096 | 0.461299 | 00:00 |
252 | 1.288898 | 0.462527 | 00:00 |
253 | 1.288980 | 0.464177 | 00:00 |
254 | 1.289070 | 0.463416 | 00:00 |
255 | 1.290112 | 0.461251 | 00:00 |
256 | 1.288822 | 0.460299 | 00:00 |
257 | 1.288775 | 0.458695 | 00:00 |
258 | 1.288434 | 0.457089 | 00:00 |
259 | 1.287203 | 0.455199 | 00:00 |
260 | 1.287099 | 0.452804 | 00:00 |
261 | 1.287053 | 0.449477 | 00:00 |
262 | 1.286709 | 0.447072 | 00:00 |
263 | 1.286041 | 0.445487 | 00:00 |
264 | 1.285576 | 0.444238 | 00:00 |
265 | 1.284309 | 0.443065 | 00:00 |
266 | 1.283903 | 0.442231 | 00:00 |
267 | 1.283920 | 0.441861 | 00:00 |
268 | 1.283106 | 0.441960 | 00:00 |
269 | 1.283582 | 0.443035 | 00:00 |
270 | 1.282750 | 0.445642 | 00:00 |
271 | 1.283448 | 0.448107 | 00:00 |
272 | 1.282522 | 0.449803 | 00:00 |
273 | 1.281676 | 0.452021 | 00:00 |
274 | 1.281590 | 0.453510 | 00:00 |
275 | 1.282207 | 0.454524 | 00:00 |
276 | 1.281351 | 0.455472 | 00:00 |
277 | 1.281237 | 0.457178 | 00:00 |
278 | 1.282604 | 0.459779 | 00:00 |
279 | 1.281335 | 0.462591 | 00:00 |
280 | 1.280466 | 0.463542 | 00:00 |
281 | 1.281321 | 0.464619 | 00:00 |
282 | 1.280022 | 0.465860 | 00:00 |
283 | 1.279205 | 0.466361 | 00:00 |
284 | 1.278493 | 0.465831 | 00:00 |
285 | 1.278625 | 0.464630 | 00:00 |
286 | 1.277769 | 0.462467 | 00:00 |
287 | 1.278440 | 0.458461 | 00:00 |
288 | 1.277338 | 0.453783 | 00:00 |
289 | 1.276033 | 0.449824 | 00:00 |
290 | 1.276147 | 0.447182 | 00:00 |
291 | 1.277112 | 0.444997 | 00:00 |
292 | 1.277598 | 0.442409 | 00:00 |
293 | 1.278379 | 0.440894 | 00:00 |
294 | 1.278243 | 0.440328 | 00:00 |
295 | 1.277778 | 0.440284 | 00:00 |
296 | 1.279097 | 0.441207 | 00:00 |
297 | 1.279043 | 0.442428 | 00:00 |
298 | 1.279270 | 0.444249 | 00:00 |
299 | 1.278434 | 0.445340 | 00:00 |
300 | 1.278132 | 0.446224 | 00:00 |
301 | 1.277234 | 0.447085 | 00:00 |
302 | 1.275964 | 0.447684 | 00:00 |
303 | 1.274671 | 0.448605 | 00:00 |
304 | 1.275020 | 0.449076 | 00:00 |
305 | 1.273722 | 0.450046 | 00:00 |
306 | 1.274755 | 0.451013 | 00:00 |
307 | 1.275642 | 0.451433 | 00:00 |
308 | 1.275408 | 0.450719 | 00:00 |
309 | 1.273247 | 0.449887 | 00:00 |
310 | 1.272665 | 0.447994 | 00:00 |
311 | 1.273003 | 0.446439 | 00:00 |
312 | 1.273043 | 0.445430 | 00:00 |
313 | 1.273437 | 0.444877 | 00:00 |
314 | 1.273943 | 0.444771 | 00:00 |
315 | 1.274404 | 0.444911 | 00:00 |
316 | 1.275467 | 0.446417 | 00:00 |
317 | 1.276742 | 0.447893 | 00:00 |
318 | 1.276362 | 0.449337 | 00:00 |
319 | 1.275604 | 0.448122 | 00:00 |
320 | 1.276364 | 0.448442 | 00:00 |
321 | 1.276813 | 0.449577 | 00:00 |
322 | 1.276665 | 0.450526 | 00:00 |
323 | 1.277380 | 0.451509 | 00:00 |
324 | 1.276901 | 0.451206 | 00:00 |
325 | 1.276423 | 0.449930 | 00:00 |
326 | 1.275547 | 0.450028 | 00:00 |
327 | 1.275081 | 0.450576 | 00:00 |
328 | 1.274731 | 0.451294 | 00:00 |
329 | 1.273817 | 0.451883 | 00:00 |
330 | 1.273240 | 0.453445 | 00:00 |
331 | 1.274742 | 0.453539 | 00:00 |
332 | 1.274715 | 0.454304 | 00:00 |
333 | 1.275226 | 0.454264 | 00:00 |
334 | 1.274455 | 0.453197 | 00:00 |
335 | 1.275521 | 0.451644 | 00:00 |
336 | 1.275896 | 0.450473 | 00:00 |
337 | 1.275860 | 0.448176 | 00:00 |
338 | 1.276271 | 0.445593 | 00:00 |
339 | 1.276003 | 0.442808 | 00:00 |
340 | 1.275415 | 0.440202 | 00:00 |
341 | 1.276127 | 0.439005 | 00:00 |
342 | 1.275972 | 0.439031 | 00:00 |
343 | 1.276569 | 0.440024 | 00:00 |
344 | 1.276008 | 0.441973 | 00:00 |
345 | 1.275777 | 0.443781 | 00:00 |
346 | 1.276256 | 0.444582 | 00:00 |
347 | 1.277215 | 0.446039 | 00:00 |
348 | 1.276950 | 0.448173 | 00:00 |
349 | 1.277574 | 0.449313 | 00:00 |
350 | 1.278115 | 0.451054 | 00:00 |
351 | 1.277225 | 0.451989 | 00:00 |
352 | 1.276574 | 0.453221 | 00:00 |
353 | 1.275585 | 0.455469 | 00:00 |
354 | 1.274473 | 0.456068 | 00:00 |
355 | 1.274140 | 0.454947 | 00:00 |
356 | 1.274698 | 0.453422 | 00:00 |
357 | 1.275622 | 0.452169 | 00:00 |
358 | 1.274646 | 0.450625 | 00:00 |
359 | 1.274767 | 0.448509 | 00:00 |
360 | 1.273904 | 0.446711 | 00:00 |
361 | 1.273652 | 0.446107 | 00:00 |
362 | 1.274045 | 0.444572 | 00:00 |
363 | 1.273152 | 0.444826 | 00:00 |
364 | 1.273077 | 0.444667 | 00:00 |
365 | 1.273546 | 0.444369 | 00:00 |
366 | 1.273254 | 0.444090 | 00:00 |
367 | 1.272072 | 0.444427 | 00:00 |
368 | 1.272523 | 0.443745 | 00:00 |
369 | 1.272367 | 0.442162 | 00:00 |
370 | 1.271725 | 0.441402 | 00:00 |
371 | 1.272233 | 0.440817 | 00:00 |
372 | 1.272786 | 0.439909 | 00:00 |
373 | 1.271984 | 0.440383 | 00:00 |
374 | 1.271438 | 0.440969 | 00:00 |
375 | 1.272087 | 0.442260 | 00:00 |
376 | 1.272138 | 0.443744 | 00:00 |
377 | 1.272306 | 0.444796 | 00:00 |
378 | 1.272574 | 0.445221 | 00:00 |
379 | 1.271547 | 0.446293 | 00:00 |
380 | 1.272340 | 0.447935 | 00:00 |
381 | 1.273058 | 0.450134 | 00:00 |
382 | 1.271911 | 0.451785 | 00:00 |
383 | 1.272952 | 0.451823 | 00:00 |
384 | 1.273204 | 0.451018 | 00:00 |
385 | 1.273335 | 0.449144 | 00:00 |
386 | 1.273633 | 0.447319 | 00:00 |
387 | 1.272399 | 0.445352 | 00:00 |
388 | 1.273201 | 0.442943 | 00:00 |
389 | 1.273329 | 0.441387 | 00:00 |
390 | 1.272785 | 0.439546 | 00:00 |
391 | 1.272634 | 0.438152 | 00:00 |
392 | 1.273203 | 0.437551 | 00:00 |
393 | 1.272129 | 0.437695 | 00:00 |
394 | 1.272987 | 0.437749 | 00:00 |
395 | 1.273840 | 0.438374 | 00:00 |
396 | 1.274974 | 0.439188 | 00:00 |
397 | 1.274619 | 0.439760 | 00:00 |
398 | 1.274106 | 0.440300 | 00:00 |
399 | 1.275277 | 0.439990 | 00:00 |
400 | 1.274680 | 0.440262 | 00:00 |
401 | 1.273695 | 0.440013 | 00:00 |
402 | 1.273230 | 0.438968 | 00:00 |
403 | 1.274377 | 0.438218 | 00:00 |
404 | 1.273531 | 0.437817 | 00:00 |
405 | 1.273620 | 0.437358 | 00:00 |
406 | 1.274253 | 0.436352 | 00:00 |
407 | 1.273771 | 0.435403 | 00:00 |
408 | 1.274173 | 0.434409 | 00:00 |
409 | 1.273501 | 0.433826 | 00:00 |
410 | 1.272775 | 0.433587 | 00:00 |
411 | 1.272508 | 0.433174 | 00:00 |
412 | 1.272207 | 0.433707 | 00:00 |
413 | 1.272272 | 0.432533 | 00:00 |
414 | 1.270983 | 0.430747 | 00:00 |
415 | 1.272038 | 0.430000 | 00:00 |
416 | 1.272086 | 0.429125 | 00:00 |
417 | 1.272821 | 0.428850 | 00:00 |
418 | 1.275159 | 0.429375 | 00:00 |
419 | 1.275083 | 0.430764 | 00:00 |
420 | 1.275092 | 0.432337 | 00:00 |
421 | 1.275982 | 0.434301 | 00:00 |
422 | 1.277127 | 0.436355 | 00:00 |
423 | 1.276631 | 0.437124 | 00:00 |
424 | 1.277536 | 0.438619 | 00:00 |
425 | 1.278441 | 0.439234 | 00:00 |
426 | 1.278212 | 0.440093 | 00:00 |
427 | 1.277422 | 0.440520 | 00:00 |
428 | 1.277893 | 0.440671 | 00:00 |
429 | 1.277012 | 0.441104 | 00:00 |
430 | 1.277210 | 0.440731 | 00:00 |
431 | 1.277056 | 0.440195 | 00:00 |
432 | 1.277160 | 0.439098 | 00:00 |
433 | 1.275968 | 0.438190 | 00:00 |
434 | 1.276130 | 0.438161 | 00:00 |
435 | 1.276159 | 0.438568 | 00:00 |
436 | 1.276241 | 0.439068 | 00:00 |
437 | 1.276820 | 0.439943 | 00:00 |
438 | 1.277444 | 0.440092 | 00:00 |
439 | 1.278074 | 0.439790 | 00:00 |
440 | 1.277538 | 0.438365 | 00:00 |
441 | 1.277257 | 0.437584 | 00:00 |
442 | 1.277888 | 0.436489 | 00:00 |
443 | 1.278054 | 0.434792 | 00:00 |
444 | 1.278555 | 0.433272 | 00:00 |
445 | 1.279170 | 0.432295 | 00:00 |
446 | 1.278721 | 0.431552 | 00:00 |
447 | 1.278934 | 0.431901 | 00:00 |
448 | 1.277781 | 0.431983 | 00:00 |
449 | 1.277620 | 0.431903 | 00:00 |
450 | 1.276831 | 0.431084 | 00:00 |
451 | 1.278341 | 0.430876 | 00:00 |
452 | 1.278537 | 0.430516 | 00:00 |
453 | 1.278312 | 0.430885 | 00:00 |
454 | 1.277749 | 0.431847 | 00:00 |
455 | 1.277967 | 0.433086 | 00:00 |
456 | 1.279019 | 0.434217 | 00:00 |
457 | 1.278405 | 0.435246 | 00:00 |
458 | 1.276616 | 0.435867 | 00:00 |
459 | 1.276845 | 0.436367 | 00:00 |
460 | 1.276245 | 0.437179 | 00:00 |
461 | 1.276377 | 0.437631 | 00:00 |
462 | 1.275729 | 0.437897 | 00:00 |
463 | 1.275049 | 0.437593 | 00:00 |
464 | 1.274093 | 0.437167 | 00:00 |
465 | 1.274474 | 0.436689 | 00:00 |
466 | 1.273303 | 0.435666 | 00:00 |
467 | 1.273551 | 0.434357 | 00:00 |
468 | 1.273654 | 0.433674 | 00:00 |
469 | 1.272847 | 0.433034 | 00:00 |
470 | 1.272470 | 0.432354 | 00:00 |
471 | 1.273049 | 0.430940 | 00:00 |
472 | 1.273412 | 0.429604 | 00:00 |
473 | 1.274610 | 0.428852 | 00:00 |
474 | 1.276161 | 0.429082 | 00:00 |
475 | 1.275439 | 0.428738 | 00:00 |
476 | 1.274739 | 0.428162 | 00:00 |
477 | 1.274575 | 0.427499 | 00:00 |
478 | 1.275174 | 0.427339 | 00:00 |
479 | 1.275595 | 0.426646 | 00:00 |
480 | 1.276064 | 0.426061 | 00:00 |
481 | 1.276235 | 0.424929 | 00:00 |
482 | 1.275934 | 0.424200 | 00:00 |
483 | 1.276362 | 0.423808 | 00:00 |
484 | 1.276524 | 0.424820 | 00:00 |
485 | 1.276920 | 0.425996 | 00:00 |
486 | 1.276008 | 0.427552 | 00:00 |
487 | 1.274912 | 0.428545 | 00:00 |
488 | 1.274581 | 0.429348 | 00:00 |
489 | 1.274183 | 0.431096 | 00:00 |
490 | 1.273627 | 0.432854 | 00:00 |
491 | 1.273392 | 0.434724 | 00:00 |
492 | 1.273660 | 0.435406 | 00:00 |
493 | 1.273633 | 0.435743 | 00:00 |
494 | 1.273769 | 0.435733 | 00:00 |
495 | 1.273898 | 0.436706 | 00:00 |
496 | 1.274712 | 0.436547 | 00:00 |
497 | 1.274073 | 0.436535 | 00:00 |
498 | 1.274464 | 0.434684 | 00:00 |
499 | 1.275774 | 0.433847 | 00:00 |
500 | 1.275434 | 0.432312 | 00:00 |
501 | 1.276005 | 0.430961 | 00:00 |
502 | 1.276263 | 0.429916 | 00:00 |
503 | 1.276386 | 0.428123 | 00:00 |
504 | 1.276625 | 0.426779 | 00:00 |
505 | 1.276000 | 0.426228 | 00:00 |
506 | 1.276098 | 0.426629 | 00:00 |
507 | 1.275080 | 0.427692 | 00:00 |
508 | 1.276389 | 0.429098 | 00:00 |
509 | 1.276054 | 0.430441 | 00:00 |
510 | 1.276090 | 0.431519 | 00:00 |
511 | 1.277127 | 0.431709 | 00:00 |
512 | 1.275999 | 0.430938 | 00:00 |
513 | 1.275098 | 0.429506 | 00:00 |
514 | 1.274982 | 0.428591 | 00:00 |
515 | 1.275020 | 0.427200 | 00:00 |
516 | 1.275092 | 0.425872 | 00:00 |
517 | 1.275181 | 0.425218 | 00:00 |
518 | 1.274409 | 0.425431 | 00:00 |
519 | 1.273774 | 0.426154 | 00:00 |
520 | 1.273251 | 0.427530 | 00:00 |
521 | 1.273064 | 0.428511 | 00:00 |
522 | 1.272297 | 0.428650 | 00:00 |
523 | 1.273507 | 0.428638 | 00:00 |
524 | 1.274507 | 0.428892 | 00:00 |
525 | 1.273970 | 0.428889 | 00:00 |
526 | 1.273723 | 0.428849 | 00:00 |
527 | 1.272689 | 0.428296 | 00:00 |
528 | 1.272379 | 0.427938 | 00:00 |
529 | 1.272426 | 0.427906 | 00:00 |
530 | 1.273074 | 0.427478 | 00:00 |
531 | 1.274464 | 0.426175 | 00:00 |
532 | 1.273956 | 0.425247 | 00:00 |
533 | 1.273496 | 0.424632 | 00:00 |
534 | 1.275143 | 0.424236 | 00:00 |
535 | 1.274747 | 0.423956 | 00:00 |
536 | 1.274909 | 0.423830 | 00:00 |
537 | 1.275073 | 0.424100 | 00:00 |
538 | 1.274790 | 0.424781 | 00:00 |
539 | 1.275067 | 0.425287 | 00:00 |
540 | 1.275010 | 0.426386 | 00:00 |
541 | 1.274618 | 0.427106 | 00:00 |
542 | 1.275144 | 0.427581 | 00:00 |
543 | 1.274356 | 0.428153 | 00:00 |
544 | 1.273233 | 0.428155 | 00:00 |
545 | 1.273547 | 0.428011 | 00:00 |
546 | 1.274343 | 0.428156 | 00:00 |
547 | 1.274296 | 0.428199 | 00:00 |
548 | 1.274896 | 0.427674 | 00:00 |
549 | 1.274976 | 0.427745 | 00:00 |
550 | 1.275443 | 0.427095 | 00:00 |
551 | 1.274795 | 0.427033 | 00:00 |
552 | 1.274088 | 0.427260 | 00:00 |
553 | 1.273752 | 0.427573 | 00:00 |
554 | 1.274754 | 0.427670 | 00:00 |
555 | 1.275949 | 0.426888 | 00:00 |
556 | 1.274297 | 0.426433 | 00:00 |
557 | 1.275470 | 0.426053 | 00:00 |
558 | 1.274680 | 0.425830 | 00:00 |
559 | 1.274346 | 0.425301 | 00:00 |
560 | 1.273932 | 0.424736 | 00:00 |
561 | 1.274718 | 0.424207 | 00:00 |
562 | 1.275055 | 0.423615 | 00:00 |
563 | 1.275564 | 0.422614 | 00:00 |
564 | 1.274421 | 0.421938 | 00:00 |
565 | 1.274623 | 0.420876 | 00:00 |
566 | 1.275101 | 0.420440 | 00:00 |
567 | 1.274939 | 0.419782 | 00:00 |
568 | 1.277139 | 0.419721 | 00:00 |
569 | 1.276942 | 0.419491 | 00:00 |
570 | 1.277254 | 0.419328 | 00:00 |
571 | 1.277496 | 0.419572 | 00:00 |
572 | 1.277800 | 0.419524 | 00:00 |
573 | 1.278063 | 0.419531 | 00:00 |
574 | 1.278172 | 0.419504 | 00:00 |
575 | 1.277929 | 0.419522 | 00:00 |
576 | 1.278976 | 0.420401 | 00:00 |
577 | 1.278951 | 0.421076 | 00:00 |
578 | 1.278936 | 0.421937 | 00:00 |
579 | 1.278026 | 0.423059 | 00:00 |
580 | 1.277990 | 0.424050 | 00:00 |
581 | 1.276585 | 0.425667 | 00:00 |
582 | 1.277262 | 0.427236 | 00:00 |
583 | 1.277856 | 0.429521 | 00:00 |
584 | 1.277002 | 0.431666 | 00:00 |
585 | 1.276585 | 0.433043 | 00:00 |
586 | 1.275947 | 0.434727 | 00:00 |
587 | 1.276059 | 0.434814 | 00:00 |
588 | 1.275011 | 0.434035 | 00:00 |
589 | 1.275316 | 0.433805 | 00:00 |
590 | 1.273905 | 0.433547 | 00:00 |
591 | 1.274180 | 0.433468 | 00:00 |
592 | 1.273776 | 0.434108 | 00:00 |
593 | 1.273625 | 0.433555 | 00:00 |
594 | 1.273317 | 0.432648 | 00:00 |
595 | 1.273115 | 0.431505 | 00:00 |
596 | 1.273500 | 0.430341 | 00:00 |
597 | 1.272781 | 0.429411 | 00:00 |
598 | 1.272768 | 0.428744 | 00:00 |
599 | 1.273141 | 0.428526 | 00:00 |
600 | 1.273931 | 0.427831 | 00:00 |
601 | 1.275229 | 0.426826 | 00:00 |
602 | 1.274655 | 0.426430 | 00:00 |
603 | 1.272770 | 0.426874 | 00:00 |
604 | 1.272791 | 0.427310 | 00:00 |
605 | 1.271165 | 0.428531 | 00:00 |
606 | 1.271338 | 0.429936 | 00:00 |
607 | 1.271789 | 0.431701 | 00:00 |
608 | 1.271045 | 0.433470 | 00:00 |
609 | 1.270696 | 0.436342 | 00:00 |
610 | 1.270494 | 0.440009 | 00:00 |
611 | 1.270100 | 0.443815 | 00:00 |
612 | 1.271096 | 0.448296 | 00:00 |
613 | 1.271580 | 0.451146 | 00:00 |
614 | 1.271622 | 0.452940 | 00:00 |
615 | 1.270776 | 0.454178 | 00:00 |
616 | 1.271864 | 0.454249 | 00:00 |
617 | 1.272289 | 0.453211 | 00:00 |
618 | 1.271519 | 0.450951 | 00:00 |
619 | 1.271598 | 0.448288 | 00:00 |
620 | 1.271333 | 0.446460 | 00:00 |
621 | 1.272216 | 0.444449 | 00:00 |
622 | 1.272854 | 0.442452 | 00:00 |
623 | 1.272062 | 0.440141 | 00:00 |
624 | 1.271588 | 0.437873 | 00:00 |
625 | 1.272496 | 0.434874 | 00:00 |
626 | 1.271760 | 0.432556 | 00:00 |
627 | 1.270994 | 0.429463 | 00:00 |
628 | 1.271371 | 0.426620 | 00:00 |
629 | 1.270853 | 0.423774 | 00:00 |
630 | 1.271135 | 0.421211 | 00:00 |
631 | 1.271780 | 0.418900 | 00:00 |
632 | 1.273019 | 0.417591 | 00:00 |
633 | 1.273753 | 0.416858 | 00:00 |
634 | 1.273858 | 0.416354 | 00:00 |
635 | 1.274122 | 0.416114 | 00:00 |
636 | 1.273795 | 0.415861 | 00:00 |
637 | 1.273036 | 0.415816 | 00:00 |
638 | 1.272659 | 0.415706 | 00:00 |
639 | 1.272024 | 0.416092 | 00:00 |
640 | 1.271669 | 0.416561 | 00:00 |
641 | 1.272170 | 0.417270 | 00:00 |
642 | 1.271865 | 0.418099 | 00:00 |
643 | 1.271565 | 0.418794 | 00:00 |
644 | 1.271142 | 0.419647 | 00:00 |
645 | 1.270977 | 0.420059 | 00:00 |
646 | 1.271979 | 0.420416 | 00:00 |
647 | 1.271217 | 0.420808 | 00:00 |
648 | 1.271259 | 0.420767 | 00:00 |
649 | 1.272616 | 0.421066 | 00:00 |
650 | 1.272668 | 0.421125 | 00:00 |
651 | 1.271993 | 0.421768 | 00:00 |
652 | 1.272138 | 0.422897 | 00:00 |
653 | 1.271592 | 0.424054 | 00:00 |
654 | 1.272083 | 0.424093 | 00:00 |
655 | 1.272030 | 0.423063 | 00:00 |
656 | 1.272285 | 0.422795 | 00:00 |
657 | 1.271673 | 0.422893 | 00:00 |
658 | 1.273349 | 0.423128 | 00:00 |
659 | 1.272597 | 0.423218 | 00:00 |
660 | 1.273699 | 0.422960 | 00:00 |
661 | 1.273885 | 0.422069 | 00:00 |
662 | 1.273517 | 0.421062 | 00:00 |
663 | 1.273089 | 0.420342 | 00:00 |
664 | 1.272442 | 0.419972 | 00:00 |
665 | 1.271361 | 0.419623 | 00:00 |
666 | 1.271217 | 0.419438 | 00:00 |
667 | 1.269993 | 0.418890 | 00:00 |
668 | 1.269655 | 0.418299 | 00:00 |
669 | 1.269194 | 0.417920 | 00:00 |
670 | 1.268759 | 0.417905 | 00:00 |
671 | 1.268955 | 0.418348 | 00:00 |
672 | 1.268707 | 0.418749 | 00:00 |
673 | 1.268654 | 0.419811 | 00:00 |
674 | 1.268233 | 0.421045 | 00:00 |
675 | 1.267636 | 0.422275 | 00:00 |
676 | 1.266986 | 0.423477 | 00:00 |
677 | 1.267742 | 0.424165 | 00:00 |
678 | 1.268641 | 0.425028 | 00:00 |
679 | 1.269050 | 0.425611 | 00:00 |
680 | 1.269403 | 0.426467 | 00:00 |
681 | 1.269091 | 0.427412 | 00:00 |
682 | 1.267687 | 0.427905 | 00:00 |
683 | 1.267508 | 0.428243 | 00:00 |
684 | 1.267759 | 0.428193 | 00:00 |
685 | 1.268438 | 0.427318 | 00:00 |
686 | 1.268508 | 0.426198 | 00:00 |
687 | 1.268796 | 0.424193 | 00:00 |
688 | 1.270079 | 0.422683 | 00:00 |
689 | 1.269907 | 0.421311 | 00:00 |
690 | 1.270103 | 0.420022 | 00:00 |
691 | 1.270363 | 0.418645 | 00:00 |
692 | 1.270039 | 0.417788 | 00:00 |
693 | 1.268653 | 0.417462 | 00:00 |
694 | 1.269908 | 0.417718 | 00:00 |
695 | 1.270578 | 0.418532 | 00:00 |
696 | 1.272404 | 0.419070 | 00:00 |
697 | 1.272347 | 0.419774 | 00:00 |
698 | 1.272877 | 0.420794 | 00:00 |
699 | 1.272881 | 0.422011 | 00:00 |
700 | 1.273312 | 0.422206 | 00:00 |
701 | 1.273033 | 0.422188 | 00:00 |
702 | 1.273083 | 0.421894 | 00:00 |
703 | 1.273080 | 0.421378 | 00:00 |
704 | 1.272576 | 0.420984 | 00:00 |
705 | 1.272601 | 0.421140 | 00:00 |
706 | 1.273961 | 0.420833 | 00:00 |
707 | 1.273515 | 0.420523 | 00:00 |
708 | 1.274026 | 0.420280 | 00:00 |
709 | 1.274152 | 0.420168 | 00:00 |
710 | 1.274102 | 0.420034 | 00:00 |
711 | 1.274381 | 0.419448 | 00:00 |
712 | 1.273970 | 0.419314 | 00:00 |
713 | 1.273785 | 0.419432 | 00:00 |
714 | 1.273130 | 0.420306 | 00:00 |
715 | 1.272942 | 0.421600 | 00:00 |
716 | 1.271915 | 0.422970 | 00:00 |
717 | 1.272500 | 0.424144 | 00:00 |
718 | 1.273117 | 0.424586 | 00:00 |
719 | 1.272259 | 0.424356 | 00:00 |
720 | 1.272185 | 0.424843 | 00:00 |
721 | 1.271772 | 0.425027 | 00:00 |
722 | 1.272063 | 0.424572 | 00:00 |
723 | 1.272277 | 0.424014 | 00:00 |
724 | 1.272755 | 0.423677 | 00:00 |
725 | 1.273820 | 0.423826 | 00:00 |
726 | 1.272688 | 0.423843 | 00:00 |
727 | 1.272453 | 0.423943 | 00:00 |
728 | 1.272389 | 0.423767 | 00:00 |
729 | 1.273391 | 0.422945 | 00:00 |
730 | 1.274099 | 0.421896 | 00:00 |
731 | 1.273512 | 0.421346 | 00:00 |
732 | 1.273110 | 0.420953 | 00:00 |
733 | 1.272611 | 0.420504 | 00:00 |
734 | 1.272441 | 0.420577 | 00:00 |
735 | 1.271951 | 0.420622 | 00:00 |
736 | 1.272573 | 0.420336 | 00:00 |
737 | 1.273750 | 0.420125 | 00:00 |
738 | 1.273916 | 0.420273 | 00:00 |
739 | 1.273587 | 0.420420 | 00:00 |
740 | 1.272597 | 0.420556 | 00:00 |
741 | 1.271311 | 0.420938 | 00:00 |
742 | 1.271327 | 0.421636 | 00:00 |
743 | 1.271217 | 0.422211 | 00:00 |
744 | 1.270743 | 0.422670 | 00:00 |
745 | 1.269524 | 0.423153 | 00:00 |
746 | 1.269111 | 0.424199 | 00:00 |
747 | 1.268074 | 0.425692 | 00:00 |
748 | 1.267374 | 0.427448 | 00:00 |
749 | 1.267113 | 0.429417 | 00:00 |
750 | 1.267896 | 0.430464 | 00:00 |
751 | 1.268472 | 0.431497 | 00:00 |
752 | 1.268011 | 0.432597 | 00:00 |
753 | 1.269007 | 0.433072 | 00:00 |
754 | 1.269112 | 0.433196 | 00:00 |
755 | 1.269770 | 0.432484 | 00:00 |
756 | 1.268727 | 0.431110 | 00:00 |
757 | 1.268470 | 0.429870 | 00:00 |
758 | 1.269278 | 0.428116 | 00:00 |
759 | 1.271361 | 0.426084 | 00:00 |
760 | 1.271295 | 0.423985 | 00:00 |
761 | 1.271353 | 0.422090 | 00:00 |
762 | 1.271455 | 0.420591 | 00:00 |
763 | 1.271541 | 0.419276 | 00:00 |
764 | 1.270986 | 0.418833 | 00:00 |
765 | 1.270825 | 0.418824 | 00:00 |
766 | 1.271915 | 0.419237 | 00:00 |
767 | 1.272922 | 0.419968 | 00:00 |
768 | 1.272471 | 0.420297 | 00:00 |
769 | 1.271821 | 0.420603 | 00:00 |
770 | 1.271629 | 0.420768 | 00:00 |
771 | 1.271662 | 0.421128 | 00:00 |
772 | 1.271456 | 0.420679 | 00:00 |
773 | 1.272750 | 0.420017 | 00:00 |
774 | 1.272356 | 0.419447 | 00:00 |
775 | 1.271295 | 0.418807 | 00:00 |
776 | 1.270830 | 0.418076 | 00:00 |
777 | 1.270880 | 0.417508 | 00:00 |
778 | 1.271060 | 0.416982 | 00:00 |
779 | 1.271104 | 0.416521 | 00:00 |
780 | 1.271205 | 0.416082 | 00:00 |
781 | 1.271225 | 0.415755 | 00:00 |
782 | 1.271719 | 0.415308 | 00:00 |
783 | 1.271368 | 0.415058 | 00:00 |
784 | 1.271442 | 0.415001 | 00:00 |
785 | 1.271936 | 0.415055 | 00:00 |
786 | 1.271050 | 0.415188 | 00:00 |
787 | 1.270609 | 0.415531 | 00:00 |
788 | 1.270226 | 0.416277 | 00:00 |
789 | 1.270020 | 0.417182 | 00:00 |
790 | 1.269789 | 0.418029 | 00:00 |
791 | 1.270137 | 0.419041 | 00:00 |
792 | 1.270787 | 0.419907 | 00:00 |
793 | 1.270613 | 0.420784 | 00:00 |
794 | 1.270307 | 0.421787 | 00:00 |
795 | 1.269954 | 0.422248 | 00:00 |
796 | 1.269829 | 0.422456 | 00:00 |
797 | 1.270144 | 0.422551 | 00:00 |
798 | 1.270793 | 0.423193 | 00:00 |
799 | 1.271784 | 0.423621 | 00:00 |
800 | 1.271582 | 0.424397 | 00:00 |
801 | 1.271562 | 0.424124 | 00:00 |
802 | 1.270906 | 0.423450 | 00:00 |
803 | 1.272054 | 0.422543 | 00:00 |
804 | 1.271724 | 0.421719 | 00:00 |
805 | 1.271206 | 0.421711 | 00:00 |
806 | 1.270157 | 0.421347 | 00:00 |
807 | 1.268690 | 0.421744 | 00:00 |
808 | 1.269302 | 0.422830 | 00:00 |
809 | 1.269266 | 0.424024 | 00:00 |
810 | 1.268813 | 0.424388 | 00:00 |
811 | 1.269285 | 0.424709 | 00:00 |
812 | 1.269601 | 0.425397 | 00:00 |
813 | 1.269884 | 0.425630 | 00:00 |
814 | 1.269699 | 0.426112 | 00:00 |
815 | 1.269061 | 0.426136 | 00:00 |
816 | 1.268275 | 0.425682 | 00:00 |
817 | 1.268811 | 0.425237 | 00:00 |
818 | 1.267624 | 0.424938 | 00:00 |
819 | 1.267843 | 0.424417 | 00:00 |
820 | 1.267787 | 0.423493 | 00:00 |
821 | 1.268056 | 0.422811 | 00:00 |
822 | 1.268793 | 0.422338 | 00:00 |
823 | 1.269565 | 0.421562 | 00:00 |
824 | 1.269217 | 0.421185 | 00:00 |
825 | 1.268815 | 0.421531 | 00:00 |
826 | 1.268254 | 0.421782 | 00:00 |
827 | 1.267708 | 0.422387 | 00:00 |
828 | 1.267267 | 0.422830 | 00:00 |
829 | 1.267699 | 0.423381 | 00:00 |
830 | 1.268082 | 0.424316 | 00:00 |
831 | 1.269389 | 0.424898 | 00:00 |
832 | 1.270597 | 0.425325 | 00:00 |
833 | 1.270172 | 0.425304 | 00:00 |
834 | 1.271292 | 0.424949 | 00:00 |
835 | 1.272409 | 0.425245 | 00:00 |
836 | 1.272232 | 0.425594 | 00:00 |
837 | 1.272535 | 0.426534 | 00:00 |
838 | 1.272956 | 0.427575 | 00:00 |
839 | 1.271954 | 0.429451 | 00:00 |
840 | 1.272637 | 0.431023 | 00:00 |
841 | 1.273308 | 0.432484 | 00:00 |
842 | 1.274460 | 0.433855 | 00:00 |
843 | 1.274670 | 0.434733 | 00:00 |
844 | 1.274493 | 0.434891 | 00:00 |
845 | 1.273065 | 0.434844 | 00:00 |
846 | 1.273523 | 0.433179 | 00:00 |
847 | 1.273709 | 0.431525 | 00:00 |
848 | 1.272139 | 0.430383 | 00:00 |
849 | 1.271468 | 0.429011 | 00:00 |
850 | 1.272084 | 0.427564 | 00:00 |
851 | 1.271823 | 0.426059 | 00:00 |
852 | 1.272588 | 0.424455 | 00:00 |
853 | 1.272524 | 0.423188 | 00:00 |
854 | 1.273265 | 0.422436 | 00:00 |
855 | 1.272757 | 0.421354 | 00:00 |
856 | 1.271702 | 0.420359 | 00:00 |
857 | 1.272387 | 0.419776 | 00:00 |
858 | 1.273033 | 0.419270 | 00:00 |
859 | 1.273170 | 0.419229 | 00:00 |
860 | 1.272661 | 0.419336 | 00:00 |
861 | 1.271850 | 0.419764 | 00:00 |
862 | 1.271725 | 0.420668 | 00:00 |
863 | 1.272077 | 0.421613 | 00:00 |
864 | 1.271688 | 0.422072 | 00:00 |
865 | 1.272325 | 0.422564 | 00:00 |
866 | 1.272381 | 0.422797 | 00:00 |
867 | 1.273450 | 0.423622 | 00:00 |
868 | 1.273376 | 0.424079 | 00:00 |
869 | 1.273843 | 0.424435 | 00:00 |
870 | 1.273430 | 0.424200 | 00:00 |
871 | 1.273257 | 0.424379 | 00:00 |
872 | 1.272924 | 0.423945 | 00:00 |
873 | 1.272440 | 0.423741 | 00:00 |
874 | 1.271832 | 0.424008 | 00:00 |
875 | 1.271346 | 0.424027 | 00:00 |
876 | 1.270279 | 0.424191 | 00:00 |
877 | 1.271330 | 0.424767 | 00:00 |
878 | 1.272347 | 0.424582 | 00:00 |
879 | 1.271782 | 0.424495 | 00:00 |
880 | 1.270341 | 0.423923 | 00:00 |
881 | 1.270595 | 0.423531 | 00:00 |
882 | 1.270957 | 0.423210 | 00:00 |
883 | 1.270394 | 0.422807 | 00:00 |
884 | 1.270517 | 0.422459 | 00:00 |
885 | 1.271277 | 0.422543 | 00:00 |
886 | 1.272307 | 0.422034 | 00:00 |
887 | 1.272899 | 0.420725 | 00:00 |
888 | 1.271770 | 0.419568 | 00:00 |
889 | 1.271013 | 0.419065 | 00:00 |
890 | 1.271375 | 0.418563 | 00:00 |
891 | 1.271399 | 0.417978 | 00:00 |
892 | 1.269894 | 0.417693 | 00:00 |
893 | 1.269401 | 0.417770 | 00:00 |
894 | 1.270070 | 0.418011 | 00:00 |
895 | 1.271703 | 0.418210 | 00:00 |
896 | 1.270701 | 0.417986 | 00:00 |
897 | 1.270333 | 0.418393 | 00:00 |
898 | 1.270212 | 0.418955 | 00:00 |
899 | 1.269930 | 0.419543 | 00:00 |
900 | 1.269447 | 0.420885 | 00:00 |
901 | 1.269472 | 0.422435 | 00:00 |
902 | 1.270327 | 0.424117 | 00:00 |
903 | 1.269371 | 0.425407 | 00:00 |
904 | 1.269742 | 0.427297 | 00:00 |
905 | 1.269597 | 0.428427 | 00:00 |
906 | 1.269879 | 0.428448 | 00:00 |
907 | 1.268686 | 0.427980 | 00:00 |
908 | 1.268300 | 0.427277 | 00:00 |
909 | 1.268517 | 0.426578 | 00:00 |
910 | 1.270159 | 0.425584 | 00:00 |
911 | 1.269550 | 0.424793 | 00:00 |
912 | 1.269740 | 0.423792 | 00:00 |
913 | 1.269372 | 0.422663 | 00:00 |
914 | 1.270665 | 0.421337 | 00:00 |
915 | 1.271434 | 0.419985 | 00:00 |
916 | 1.271421 | 0.418839 | 00:00 |
917 | 1.270465 | 0.418105 | 00:00 |
918 | 1.269036 | 0.417136 | 00:00 |
919 | 1.267547 | 0.416472 | 00:00 |
920 | 1.266729 | 0.416265 | 00:00 |
921 | 1.267774 | 0.416307 | 00:00 |
922 | 1.267467 | 0.416354 | 00:00 |
923 | 1.266899 | 0.416285 | 00:00 |
924 | 1.266400 | 0.416102 | 00:00 |
925 | 1.266270 | 0.416197 | 00:00 |
926 | 1.267540 | 0.416471 | 00:00 |
927 | 1.267549 | 0.416598 | 00:00 |
928 | 1.267579 | 0.417045 | 00:00 |
929 | 1.267099 | 0.417216 | 00:00 |
930 | 1.267423 | 0.417131 | 00:00 |
931 | 1.266348 | 0.417050 | 00:00 |
932 | 1.266774 | 0.416642 | 00:00 |
933 | 1.267326 | 0.416432 | 00:00 |
934 | 1.268196 | 0.416297 | 00:00 |
935 | 1.268687 | 0.416261 | 00:00 |
936 | 1.268104 | 0.416380 | 00:00 |
937 | 1.267747 | 0.416236 | 00:00 |
938 | 1.267965 | 0.416246 | 00:00 |
939 | 1.267852 | 0.416088 | 00:00 |
940 | 1.267749 | 0.416140 | 00:00 |
941 | 1.267872 | 0.415994 | 00:00 |
942 | 1.268932 | 0.415794 | 00:00 |
943 | 1.268650 | 0.415612 | 00:00 |
944 | 1.268238 | 0.415426 | 00:00 |
945 | 1.268917 | 0.415220 | 00:00 |
946 | 1.269694 | 0.415236 | 00:00 |
947 | 1.268451 | 0.415348 | 00:00 |
948 | 1.269323 | 0.415505 | 00:00 |
949 | 1.269393 | 0.415677 | 00:00 |
950 | 1.269968 | 0.415693 | 00:00 |
951 | 1.270348 | 0.415737 | 00:00 |
952 | 1.269088 | 0.415885 | 00:00 |
953 | 1.269453 | 0.416111 | 00:00 |
954 | 1.268461 | 0.416437 | 00:00 |
955 | 1.268772 | 0.416775 | 00:00 |
956 | 1.267800 | 0.416897 | 00:00 |
957 | 1.267764 | 0.416881 | 00:00 |
958 | 1.267281 | 0.416874 | 00:00 |
959 | 1.267384 | 0.416768 | 00:00 |
960 | 1.265235 | 0.416502 | 00:00 |
961 | 1.264060 | 0.415914 | 00:00 |
962 | 1.264244 | 0.415704 | 00:00 |
963 | 1.264464 | 0.415380 | 00:00 |
964 | 1.264683 | 0.414916 | 00:00 |
965 | 1.263351 | 0.414535 | 00:00 |
966 | 1.262699 | 0.414396 | 00:00 |
967 | 1.263175 | 0.414138 | 00:00 |
968 | 1.264636 | 0.414032 | 00:00 |
969 | 1.265427 | 0.414129 | 00:00 |
970 | 1.263703 | 0.414361 | 00:00 |
971 | 1.264736 | 0.414615 | 00:00 |
972 | 1.265115 | 0.414957 | 00:00 |
973 | 1.265979 | 0.415205 | 00:00 |
974 | 1.265494 | 0.415441 | 00:00 |
975 | 1.264690 | 0.415604 | 00:00 |
976 | 1.263579 | 0.415683 | 00:00 |
977 | 1.263605 | 0.415899 | 00:00 |
978 | 1.264619 | 0.415924 | 00:00 |
979 | 1.264595 | 0.416032 | 00:00 |
980 | 1.263995 | 0.416174 | 00:00 |
981 | 1.265043 | 0.416207 | 00:00 |
982 | 1.264780 | 0.416322 | 00:00 |
983 | 1.264264 | 0.416483 | 00:00 |
984 | 1.264869 | 0.416668 | 00:00 |
985 | 1.265409 | 0.417176 | 00:00 |
986 | 1.265599 | 0.417357 | 00:00 |
987 | 1.265436 | 0.417462 | 00:00 |
988 | 1.266293 | 0.417758 | 00:00 |
989 | 1.264438 | 0.417809 | 00:00 |
990 | 1.264117 | 0.418057 | 00:00 |
991 | 1.263802 | 0.417804 | 00:00 |
992 | 1.264000 | 0.417707 | 00:00 |
993 | 1.264081 | 0.417715 | 00:00 |
994 | 1.264172 | 0.417634 | 00:00 |
995 | 1.265378 | 0.417668 | 00:00 |
996 | 1.265913 | 0.417539 | 00:00 |
997 | 1.266175 | 0.417496 | 00:00 |
998 | 1.265986 | 0.417067 | 00:00 |
999 | 1.266017 | 0.416893 | 00:00 |
-
loss들도 에폭별로 기록되어 있음
lrnr.recorder.plot_loss()
-
net_fastai에도 파라메터가 업데이트 되어있음
- 리스트를 확인해보면 net_fastai 의 파라메터가 알아서 GPU로 옮겨져서 학습됨.
-
플랏
net_fastai.to("cpu")
plt.plot(X,y,'.')
plt.plot(X_tr,net_fastai(X_tr).data)
plt.plot(X_val,net_fastai(X_val).data)
[<matplotlib.lines.Line2D at 0x7f6e94e31640>]
import time
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=512),
torch.nn.ReLU(),
torch.nn.Linear(in_features=512,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
0.6667273044586182
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=512),
torch.nn.ReLU(),
torch.nn.Linear(in_features=512,out_features=1))
net.to("cuda:0")
X=X.to("cuda:0")
y=y.to("cuda:0")
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
2.074880838394165
-
?? CPU가 더 빠르다!!
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=20480),
torch.nn.ReLU(),
torch.nn.Linear(in_features=20480,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
3.695246696472168
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=20480),
torch.nn.ReLU(),
torch.nn.Linear(in_features=20480,out_features=1))
net.to("cuda:0")
X=X.to("cuda:0")
y=y.to("cuda:0")
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
2.2188520431518555
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=204800),
torch.nn.ReLU(),
torch.nn.Linear(in_features=204800,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
62.97744035720825
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=204800),
torch.nn.ReLU(),
torch.nn.Linear(in_features=204800,out_features=1))
net.to("cuda:0")
X=X.to("cuda:0")
y=y.to("cuda:0")
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
2.404008626937866
-
현재 작업하고 있는 컴퓨터에서 아래코드를 실행후 시간을 출력하여 스샷제출
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=512),
torch.nn.ReLU(),
torch.nn.Linear(in_features=512,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
0.6667273044586182