{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 14wk-2: 클래스공부 4단계 – 파이썬의 비밀 (3)\n", "\n", "최규빈 \n", "2023-06-07\n", "\n", "\n", "\n", "# 강의영상\n", "\n", "> youtube:\n", "> \n", "\n", "# imports" ], "id": "a4bf5ac3-030f-4acd-876b-a86688d094d6" }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd" ], "id": "0af2488d-77b4-46d5-acd6-bc02c0b5c65b" }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 클래스공부 4단계: 파이썬의 비밀 (3)\n", "\n", "## 비밀12: `__iter__` ($\\star\\star\\star\\star\\star$)\n", "\n", "### ***for문의 복습***\n", "\n", "`-` 아래와 같은 예제들을 관찰하여 for문을 복습하자.\n", "\n", "(예제1) \\[1,2,3,4\\]" ], "id": "15180dd8-64be-4f90-a940-b143eae26def" }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1\n", "2\n", "33\n", "4" ] } ], "source": [ "for i in [1,2,33,4]:\n", " print(i)" ], "id": "c3515406-eb8d-4246-a099-5bb57d4829cc" }, { "cell_type": "markdown", "metadata": {}, "source": [ "(예제2) (1,2,3,4)" ], "id": "6e4b623c-e08f-4dd6-974f-be93742a50c7" }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1\n", "2\n", "33\n", "4" ] } ], "source": [ "for i in (1,2,33,4):\n", " print(i)" ], "id": "d7674f54-6283-4c1a-9b12-17dde6a6ec1c" }, { "cell_type": "markdown", "metadata": {}, "source": [ "(예제3) ‘1234’" ], "id": "ee55ea6b-2006-48d5-8fb4-c8166530c8fc" }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1\n", "2\n", "3\n", "a\n", "s\n", "d\n", "f" ] } ], "source": [ "for i in '123asdf':\n", " print(i)" ], "id": "0666f79a-6857-4318-a907-454d1f55b7a6" }, { "cell_type": "markdown", "metadata": {}, "source": [ "(예제4) 5" ], "id": "d03e5a17-2145-4e96-a176-5359eb0fcf2f" }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "for i in 5:\n", " print(i)" ], "id": "d099e8e7-feda-43db-a439-6a628e04e450" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`-` 의문1:\n", "\n", "``` python\n", "for i in ???:\n", " print(i)\n", "```\n", "\n", "에서 ??? 자리에 올수 있는 것이 무엇일까?\n", "\n", "(예제5) \\[\\[1,2,3,4\\],\\[3,4,5,6\\]\\],\n", "pd.DataFrame(\\[\\[1,2,3,4\\],\\[3,4,5,6\\]\\])" ], "id": "5f61eaa4-9633-4e82-9639-91ab1e3f2bf3" }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "lst = [[1,2,3,4],[3,4,5,6]]\n", "lst" ], "id": "e4d7419c-9b6f-4335-97dc-641061103241" }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[1, 2, 3, 4]\n", "[3, 4, 5, 6]" ] } ], "source": [ "for l in lst:\n", " print(l)" ], "id": "7aacc913-bbc9-4043-b564-80c6705be6fa" }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[1 2 3 4]\n", "[3 4 5 6]" ] } ], "source": [ "for l in np.array(lst):\n", " print(l)" ], "id": "a0e3a92e-b049-4a66-8536-21d361661390" }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "0\n", "1\n", "2\n", "3" ] } ], "source": [ "for l in pd.DataFrame(lst):\n", " print(l)" ], "id": "a45256f8-0f6c-4b48-a0ba-170a1bba8e74" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`-` 데이터프레임인 경우는 colname이 반복" ], "id": "c50ddc53-79a1-477d-8144-490dd39bf04f" }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "df = pd.DataFrame({'x':[1,2,3],'y':[2,3,4]})\n", "df" ], "id": "40b1abb5-0b7f-4f48-b46e-af06b47f7ca5" }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "x\n", "y" ] } ], "source": [ "for d in df:\n", " print(d)" ], "id": "c62e9ad0-cdd2-44e0-8971-e27f523fec58" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`-` 의문2: for의 출력결과는 어떻게 예측할 수 있을까?\n", "\n", "### ***for문의 동작원리***\n", "\n", "`-` 의문1의 해결: 아래의 ??? 자리에 올 수 있는 것은 dir()하여\n", "`__iter__`가 있는 object이다.\n", "\n", "``` python\n", "for i in ???:\n", " print(i)\n", "```\n", "\n", "이러한 오브젝트를 iterable object라고 한다.\n", "\n", "`-` 예제1~4 확인" ], "id": "ebb5079b-ded4-4340-b56d-a7182f1787ca" }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "lst = [1,2,3]\n", "set(dir(lst)) & {'__iter__'}" ], "id": "c716fb7b-36ab-451f-a7ea-3258b3d51985" }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "tpl = 1,2,3\n", "set(dir(tpl)) & {'__iter__'}" ], "id": "55b4d22f-1569-4559-a3a6-86207d237cc0" }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "string = '123'\n", "set(dir(string)) & {'__iter__'}" ], "id": "7ff2313c-977a-46a2-8743-3977d47ab0b3" }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "a = 5\n", "set(dir(a)) & {'__iter__'}" ], "id": "2ff13329-9df5-4735-8535-c02a40cf18a1" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`-` `__iter__`의 역할: iterable object를 iterator로 만들 수 있다!" ], "id": "eed4c872-4f83-4f5b-9a2d-ed3e041144dd" }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [], "source": [ "lst = [1,22,-33]" ], "id": "32b7ca53-acab-41c8-be28-c4cc14c94ccb" }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [], "source": [ "lst_iterator = lst.__iter__() \n", "# lst_iterator = iter(lst)" ], "id": "fe3f5cc9-e9fa-4e97-91ac-d6cebf5e9385" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`-` iterator가 되면 무엇이 좋은가? -\\> 숨겨진 기능 `__next__`가 열린다." ], "id": "40a99c69-0617-473f-ac60-b87a2aa7984f" }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [], "source": [ "set(dir(lst_iterator)) & {'__next__'}" ], "id": "64ba4d1c-6d3a-4ee1-90b4-f558a4a4935c" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`-` 그래서 `__next__`의 기능은? -\\> 원소를 차례대로 꺼내준다 + 더 이상\n", "꺼낼 원소가 없으면 StopIteration Error를 발생시킨다." ], "id": "a760f46f-626e-4633-9303-08369202246b" }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [], "source": [ "next(lst_iterator)\n", "# lst_iterator.__next__() # 같은코드" ], "id": "9f16e514-c552-47ba-89bf-1841b5d3f85a" }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [], "source": [ "next(lst_iterator)\n", "# lst_iterator.__next__() # 같은코드" ], "id": "50f2c387-13b4-4059-8098-1a69975ef6b2" }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "next(lst_iterator)\n", "# lst_iterator.__next__() # 같은코드" ], "id": "60f08ee2-90fe-4c1a-8798-b8cd78b78756" }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [], "source": [ "next(lst_iterator)\n", "# lst_iterator.__next__() # 같은코드" ], "id": "2ddc5af2-3940-45fe-bf5a-46fdde7de0c1" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`-` for문의 동작원리\n", "\n", "``` python\n", "for i in iterable:\n", " ...\n", "```\n", "\n", "1. 이터레이터생성: `.__iter__()` 혹은 `iter()`을 이용하여 iterable을\n", " iterator로 만든다.\n", "\n", "2. $i$생성 및 반복: 1에서 만들어진 iterator에서 `.__next__()`함수를\n", " 호출하고 결과를 $i$에 저장한뒤 for문 블락안의 내용 (들여쓰기 된\n", " 내용) 을 실행한다. $\\to$ 반복한다.\n", "\n", "3. 정지: `.__next__()`함수를 호출할때 StopIteration Error가 나오면\n", " for문을 멈춘다.\n", "\n", "![](attachment:2023-06-07-14wk-2_files/figure-ipynb/mermaid-figure-1.png)\n", "\n", "`-` 아래의 구조도 잘 돌아갈까?\n", "\n", "``` python\n", "for i in iterator:\n", " print(i)\n", "```\n", "\n", "> iterator의 iter가 자기자신을 리턴하도록 하는 트릭을 쓰면\n", "> “1.이터레이터생성 2.$i$생성 및 반복 3.정지”의 동작원리를 수정하지 않고\n", "> for문을 안전하게 돌릴 수 있다.\n", "\n", "![](attachment:2023-06-07-14wk-2_files/figure-ipynb/mermaid-figure-2.png)\n", "\n", "`-` 요약\n", "\n", "- iterable object는 숨겨진 기능으로 `__iter__`를 가진다.\n", "- iterator는 숨겨진 기능으로 `__iter__`와 `__next__`를 가진다. 따라서\n", " 정의상 iterator는 그 자체로 iterable object가 된다!\n", "- iterator의 `__iter__`는 자기자신을 리턴한다.\n", "\n", "`-` 의문2의 해결: for의 출력결과는 어떻게 예측할 수 있을까? iterator를\n", "만들어서 `.__next__()`의 출력값을 확인하면 알 수 있다." ], "attachments": { "2023-06-07-14wk-2_files/figure-ipynb/mermaid-figure-1.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACqQAAALQCAYAAAD8NoM7AAAgAElEQVR4nOzde3iV5Zno4ScHIECA\ngCjIQdGCWqWelQ6KoqIgW0QUqiiiUhXaomi3U7V1t3ZqxzrtLo5FQUWlBRSVIiK10hE84dRa0M6I\nbhyRKoJAORhIkARy2H90whgTSMhaWSuH+76uXEne71vv95BLYhb8+FZGeXl5eQAAAAAAAAAAAABA\nHWWmewAAAAAAAAAAAAAAGjdBKgAAAAAAAAAAAAAJEaQCAAAAAAAAAAAAkBBBKgAAAAAAAAAAAAAJ\nEaQCAAAAAAAAAAAAkBBBKgAAAAAAAAAAAAAJEaQCAAAAAAAAAAAAkBBBKgAAAAAAAAAAAAAJEaQC\nAAAAAAAAAAAAkBBBKgAAAAAAAAAAAAAJEaQCAAAAAAAAAAAAkBBBKgAAAAAAAAAAAAAJEaQCAAAA\nAAAAAAAAkBBBKgAAAAAAAAAAAAAJEaQCAAAAAAAAAAAAkBBBKgAAAAAAAAAAAAAJEaQCAAAAAAAA\nAAAAkBBBKgAAAAAAAAAAAAAJEaQCAAAAAAAAAAAAkBBBKgAAAAAAAAAAAAAJEaQCAAAAAAAAAAAA\nkBBBKgAAAAAAAAAAAAAJEaQCAAAAAAAAAAAAkBBBKgAAAAAAAAAAAAAJEaQCAAAAAAAAAAAAkBBB\nKgAAAAAAAAAAAAAJEaQCAAAAAAAAAAAAkBBBKgAAAAAAAAAAAAAJEaQCAAAAAAAAAAAAkJDsdA8A\nAAAAAAAAAAANyfQ7Vqd7hEbt2rsOT/cIAKSBIBUAAAAAAAAAAL6gaEdZukcAgEYnM90DAAAAAAAA\nAAAAANC4CVIBAAAAAAAAAAAASEh2ugcAAAAAAAAAAICGbMRNh6V7hAbtmXv/mu4RAGgABKkAAAAA\nAAAAALAPOblZ6R4BABq8zHQPAAAAAAAAAAAAAEDjJkgFAAAAAAAAAAAAICGCVAAAAAAAAAAAAAAS\nIkgFAAAAAAAAAAAAICGCVAAAAAAAAAAAAAASIkgFAAAAAAAAAAAAICGCVAAAAAAAAAAAAAASIkgF\nAAAAAAAAAAAAICGCVAAAAAAAAAAAAAASIkgFAAAAAAAAAAAAICGCVAAAAAAAAAAAAAASIkgFAAAA\nAAAAAAAAICGCVAAAAAAAAAAAAAASIkgFAAAAAAAAAAAAICGCVAAAAAAAAAAAAAASIkgFAAAAAAAA\nAAAAICGCVAAAAAAAAAAAAAASIkgFAAAAAAAAAAAAICGCVAAAAAAAAAAAAAASIkgFAAAAAAAAAAAA\nICGCVAAAAAAAAAAAAAASIkgFAAAAAAAAAAAAICGCVAAAAAAAAAAAAAASIkgFAAAAAAAAAAAAICGC\nVAAAAAAAAAAAAAASIkgFAAAAAAAAAAAAICHZ6R4AAAAAAAAAABqS7du3p3uEZq19+/bpHgEAgDoQ\npAIAAAAAAADAF+zcuTPdIzRrglQAgMYpM90DAAAAAAAAAAAAANC4CVIBAAAAAAAAAAAASIggFQAA\nAAAAAAAAAICECFIBAAAAAAAAAAAASIggFQAAAAAAAAAAAICECFIBAAAAAAAAAAAASIggFQAAAAAA\nAAAAAICECFIBAAAAAAAAAAAASEh2ugcAAAAAAAAAAAD27vvfnxjLl79Raa1jx04xZ84f0jQRAFQl\nSAUAAAAAAAAAKikoKIiVK1fG+++/Hx9//HFs2rQptmzZEkVFRVFcXBxZWVmRk5MTbdu2jY4dO8Yh\nhxwShx56aBxxxBFxxBFHRGamF2wFAGhuBKkAAAAAAAAAUIPbbrst3nnnnWqPXX755XHFFVfUy3Vf\nfPHFmDx5cpX13/3ud0m/VnFxcbzyyivxyiuvxDvvvBOlpaV7Pbe0tDR27doV27dvj/Xr18d77723\n51heXl6ccsopcd5558XRRx+d9DlpXE4++eQqayeddFJcd9111R4DABovQSoAAAAAAAAAJOCpp56K\nM844I3r27JnuUepk165d8eyzz8a8efNi+/btCe+Xn58f//Zv/xb/9m//FkcffXSMGjUqTj311CRM\nSlOxfPnyWL58uTAVAJoY98gHAAAAAAAAgASUlJTEr371qygvL0/3KPvtP//zP+Nb3/pWzJgxIykx\n6pe999578eMf/zjuvvvu+Oyzz5K+P43b8uXLY8KECXH99dfHsmXL0j0OAJAgd0gFAAAAAAAAgAS9\n++67sWjRohgyZEi6R6m1OXPmxOzZs6OsrKzWj8nNzY1WrVpFWVlZFBUVxc6dO2v1uKVLl8Z//Md/\nxPe///049thj6zoyTdRbb70VEyZMcMfUfbjkkjExcODgSmstW7ZK0zQAUD1BKgAAAAAAAAAkwaOP\nPhr9+vWLjh07pnuUfSorK4upU6fG888/v8/zcnNz4+tf/3oce+yxccQRR0SXLl2iZcuWlc7ZsWNH\nfPrpp7Fy5cpYvnx5vP3221FSUlLtfgUFBfHDH/4w/vf//t8xYMCApP16aDqWL18ey5cvjxNPPDGu\nv/56YeoXnHTS19M9AgDUSJAKAAAAAAAAAEmwY8eOePDBB+O2225L9yj79NBDD+0zRu3SpUtceuml\ncfbZZ0eLFi32uVfbtm2jT58+0adPnxg2bFjk5+fH/PnzY8GCBVFcXFzl/N27d8c999wTLVu2jH79\n+iX8a6HxKC8vj4yMjFqd646pANA4ZaZ7AAAAAAAAAABojNq2bVtl7bXXXos333wzDdPUzsKFC+O5\n557b6/ERI0bEAw88EIMHD64xRq1OXl5eXH311XH//ffHMcccU+055eXl8fOf/zw+/vjj/d6f5mX5\n8uUxYcKEGD9+fCxbtizd4wAANRCkAgAAAAAAAEAdjBo1KrKzq74w6dSpU6OoqCgNE+3bmjVr4pFH\nHqn2WHZ2dtx6661x7bXXRk5OTsLXOvjgg+Of//mf45xzzqn2+M6dO+Puu++OkpKShK9F0ydMBYDG\nQZAKAAAAAAAAAHVw4IEHxsiRI6us/+1vf4tZs2alYaJ9u/fee2PXrl3VHrvlllvijDPOSOr1srOz\n4+abb46BAwdWe/yTTz6JZ599NqnXpGkTpgJAwyZIBQAAAAAAAIA62LlzZ3zjG9+Ibt26VTn27LPP\nxqpVq9IwVfVef/31eP/996s9Nnr06BgwYEC9XDcjIyNuvPHG+MpXvlLt8SeeeCLy8/Pr5do0XcJU\nAGiYBKkAAAAAAAAAUAe7du2KVq1axcSJE6scKysri1/96ldRWlqahsmqmjNnTrXrvXr1issuu6xe\nr92qVav47ne/G1lZWVWO7dy5M37/+9/X6/VpuppTmPr970+MwYNPrvR22WXnpXssAKhEkAoAAAAA\nAAAAdbB79+6IiDjuuONi0KBBVY6vWrWqQbwk/cqVK2P16tXVHrvuuusiOzu73mfo1atXDB48uNpj\nv//976OkpKTeZ6Dpak5hKgA0ZIJUAAAAAAAAAKiDXbt27fl43Lhx0aFDhyrnzJo1KzZu3JjKsapY\nvHhxtetHHHFEHH/88SmbY+TIkZGZWTVT2LJlS7z11lspm4OmS5gKAOklSAUAAAAAACDtCj4rie1b\n3R0PaFy+GKR26NAhxo0bV+Wc4uLieOCBB1I5VhV//vOfq13f2x1L60uXLl3ixBNPrPbY3maEuhCm\nAkB6CFIBAAAAAABIq8L8kpg3ZW08c/9aUSrQqHz5ZeYHDRoUxx13XJXzli1bFq+++mqqxqpkzZo1\nsWnTpirrGRkZ0b9//5TPc8YZZ1S7/vbbb6d4EpoDYSoApJYgFQAAAAAAgLQpzC+J3/5qbRRsLYmC\nrSWiVKBRKS0trbI2ceLEaNmyZZX1Bx98MAoLC1MxViX/9V//Ve167969o3379imeJuKEE06odn39\n+vWxZcuWFE9Dc/HFMPXTTz9N9zgA0GQJUgEAAAAAAEiLwvySmPffMWqFgq0l8cwUUSrQeHXr1i0u\nvfTSKuv5+fnx6KOPpnye1atXV7t+5JFHpniSv+vUqVMcdNBB1R5bu3ZtiqehuVm+fHlceOGFceed\ndwpTAaAeCFIBAAAAAABIuYo7o1YXnhZ8JkoFGreRI0fGIYccUmV90aJFsWLFipTOsn79+mrXDz30\n0JTO8UW9evWqdl2QSqosXLhQmAoA9UCQCgAAAAAAQEpVxKgF+whOCz4riWfuF6UCjVN2dnZMnDix\n2mNTpkyJ3bt3p2yWLVu2VLvepUuXlM1Q22tv2LAhxZPQlJWXl9d4jjAVAJJLkAoAAAAAAEDKFOaX\nxLxqYtRDjs6NQ47OrbRWsNWdUoHG65hjjonzzz+/yvonn3wSTz31VMrm2LZtW7XrnTp1StkMX3bA\nAQdUu75jx44UT0JTlpGRERHCVABIpex0DwAAAAAAAEDzsLc7o/Y4Kjf6X9Q1IiLKyjbE2pWFe45V\n3Cl1xHd6RPtO/moLaFyuvvrqeOONN+Kzzz6rtP7000/HGWecET179qz3GYqLi6tdz8nJqfdr703r\n1q2rXd+5c2eKJ2naioqKYufOnbFz5849HxcVFUVpaemet7KysigrK4uSkpI9H3/x2BffV/fxl8/5\n4vuKj9Pti2Fqxcd7s3Dhwli4cGF06tQpLjzmgVSM12Rdf/319bZ3dnZ2ZGVlRVZWVmRnZ1f5vLpj\n2dnZ0apVq2jfvn3k5eVFhw4dokOHDns+T+f3RICmxLN2AAAAAAAA6t2+YtTTL+4aGf/9un6nX9w1\nls77UpS6VZQKNE65ubkxfvz4+NnPflZpfffu3TFlypT42c9+VmMgl6hdu3ZVu96yZct6ve6+tGjR\notr15h6k5ufnR2FhYRQWFkZBQUGl9zt27IgdO3ZEUVFRpbj0i+8rPq54o7L9CVO3bt2aipGatLfe\neivdI+yXli1b7olUv/iWl5cXXbp0iZ49e0bPnj2jW7du6R4VoEHzjB0AAAAAAIB6VdsYNSIiI1OU\nCjQtAwYMiBdffDGWLVtWaX3FihXxhz/8IQYPHlyv18/Ozq72LqnpvHNlWVlZtevZ2U3j+/u2bdti\ny5Yte942b94cBQUFe4LTL8emBQUFAtIU2p8wleZj165dsWnTpti0adM+z8vOzo7u3btHz549o0eP\nHntC1UMOOSS6du3aZL6PAdSV74IAAAAAAADUm/2JUSuIUoGm5tvf/nZ861vfqhKGPvroo3HqqadG\nx44d6+3aOTk5sWPHjirru3fvrrdr1mRv127dunWKJ6m94uLi2Lx5c5XQ9IufV7yl82tL7QlTqYuS\nkpL4+OOP4+OPP672ePfu3eOwww6Lr33ta3HsscfGMcccE23atEnxlADp45k6AAAAAAAA9aIuMWoF\nUSrQlHTp0iXGjBkTjzzySKX1wsLCeOihh+LWW2+tt2vvLfIsKCiot2vWZG/XzsnJSekcpaWl8dln\nn1UJSqsLTQsLC2vekEZJjEoyrVu3LtatWxdLly6NiIjMzMz4yle+Escdd9yeSLVnz55pnhKg/niW\nDgAAAAAAQNIlEqNWEKUCTcnw4cPj5Zdfjg8//LDS+quvvhpnn312nHLKKfVy3Q4dOsTatWurrG/Z\nsqVerlcb+fn51a7n5eUl/VqFhYXxySefxLp162Lt2rWV3m/cuDFKS0uTfk0aF3dIpT6VlZXFBx98\nEB988EHMnTs3IiLatWu3J1A97rjj4uSTT07zlADJ4xk6AAAAAAAASZWMGLWCKBVoKrKysmLixInx\n3e9+N8rLyysde+CBB2Lq1Kn1cofQbt26xbvvvltl/dNPP036tWprb9fu3r37fu9VWloaGzZs2HNX\nwi9Hp+m8EywNW0WIKkYl1QoKCmLp0qV77qLapk2b6NevX5x22mkxYMCAOOCAA9I8IUDdeXYOAAAA\nAABA0ny+vTRpMWoFUSrQVBxxxBExbNiwWLBgQaX1v/3tbzF79uz45je/mfRr9ujRo9r11atXJ/1a\ntbVmzZpq1/c2a2FhYaxdu3ZPZPrFt/Xr17vLKftFiEpD8/nnn8dLL70UL730UkREHHXUUXH66afH\n6aefHkcffXRkZtbhB2iANPHMHAAAAAAAgKTYW4zavU/bOseoFUSpQFMxduzY+OMf/xibNm2qtD5/\n/vw488wzo3fv3km93qGHHlrt+ooVK5J6ndrauHFjbN26tcp6dnb2niB1ypQpsXbt2vj000/jk08+\ncZfTBOTm5kZOTk60bt06WrduHW3atImsrKzIysqKzMzMKh9Xt1bbc7+8XrH2s5/9LN1fhoiofYja\np0+fuOCCC+KzZSkarImaNm1ave1dUlKy5620tHTP+y9+/OVzSktLY/v27ZGfnx/btm2r9P7zzz+v\nt1nrYuXKlbFy5cqYPn16tGvXLgYMGBCnnXZanHbaaZGbm5vu8QD2ybNyAAAAAAAAElYRo27bvLvS\nevc+beP0UQcnFKNWEKUCTUHr1q1jwoQJ8ZOf/KTSellZWUyZMiX+7//9v5GVlZW06/Xt2zeys7Oj\npKTyPxbYunVrrF69Og4//PCkXas2/uM//qPa9a9+9auRk5MTEREzZsxI5UgNRqtWraJdu3aRm5sb\nubm50a5duz2fd+zYMVq2bLknLK2ITHNycioFpxVr7dq1S/cvZ490B6m1DVFPPPHEuP766+Pkk0+O\niIgpy1alYrwmq+Lr2Fhs3rw58vPzqwSrFWH8mjVrqvxDglQoKCiI559/Pp5//vmIiDjrrLPif/2v\n/xUDBw5M+SwAteEZOQAAAAAAAAmpKUZN5quMilKBpuDrX/969O/fP/793/+90voHH3wQCxYsiBEj\nRuxZy85O7Hta69at46ijjqr2jqgvvfRSyoPU1157rdr1k046KaVz1LfOnTtH586d44ADDogDDjgg\nDjzwwD2R6Zfft2vXLjp27JjukZucuoaoNE8Vv2f3paioKD755JP4+OOPq7zPz89PyZwvvfRSvPTS\nS9GpU6cYOnRoXHTRRdGrV6+UXBugNjwbBwAAAAAAoM5SGaNWEKUCTcGECRPiL3/5S5WXip45c2ac\ndtppcdBBB0XE3++amahTTz212iD1xRdfjCuuuGLPnUnr28aNG+Mvf/lLtcf69euXkhkSkZeXtycw\nrXiriE47deq05/O8vLx0j9qsCVGpLzk5OdGnT5/o06dPlWM7duyIv/71r/H//t//i5UrV8a7774b\nq1bV3112t27dGrNmzYpZs2ZF3759Y9iwYTF48ODIzc2tt2sC1IZn4gAAAAAAANRJOmLUChVR6mtP\nr491H+zYsy5KBRqLAw44IK666qqYOnVqpfXi4uJ44IEH4s4774yIiJYtWyZ8rXPOOSdmzpwZu3dX\n/n69ffv2eP755+Piiy9O+Bq18dvf/jbKysqqrH/ta1+LQw45JCUzfFmbNm2qxKV7e8vKykrLjNSO\nEJV0atu2bfTt2zf69u27Z62oqGhPnPruu+/Ge++9F2vXrk36tVesWBErVqyIyZMnxwUXXBBXXHFF\n9OzZM+nXAagNz8IBAAAAAADYb+mMUStkZEacPurgWCpKBRqpoUOHxpIlS+L999+vtP7nP/85Xnvt\ntRgwYEBS7l6al5cXp512Wrz88stVjs2ZMycGDhwYnTp1Svg6+7JmzZpYtGhRtccuuOCCertuZmZm\ndO3aNXr06BHdu3ePHj167Pm4Z8+e0bZt23q7NqkhRKWhysnJieOPPz6OP/74PWuFhYXxn//5n/Hu\nu+/G66+/Xu3dq+uqqKgo5s6dG3Pnzo0zzjgjRo8eHaecckrS9geoDc/AAQAAAAAA2C8NIUatkClK\nBRqxzMzMuOGGG2LSpElRWlpa6diDDz4YJ5xwQrRp0yYp1xo1alS8+uqrVe5QumPHjpg8eXL8+Mc/\njsx6+gZeUlIS9957b5SUlFQ51qtXr/iHf/iHhPZv06bNntj0i9Fpjx49omvXrpGd7f8DTZEQlcYo\nNzc3+vfvH/3794/rrrsutm3bFq+//nosXbo0/vjHP0ZBQUFSrvPqq6/Gq6++GkcccURcfvnlMWTI\nEN8LgZTwnQYAAAAAAIBaa0gxagVRKtCYHXbYYTFixIiYO3dupfXPPvssHnvssRg1alRSrtOrV68Y\nMmRIPP/881WOvfXWW/HYY4/FN7/5zaRc68umTp1a5S6wFcaPHx9ZWVk17nHggQdWiU0rAtSOHTsm\ne2QaMCEqTUmHDh1i6NChMXTo0CgtLY133nknXnvttVi6dGl8+OGHCe//X//1X3HnnXfGr371q/jG\nN74Rl1xySeTl5SVhcoDqeeYNAAAAAABArTTEGLWCKBVozEaPHh1Lly6NDRs2VFp/4YUXkvpyy2PG\njImlS5fG9u3bqxybN29eZGVlxVVXXVVj6FdbZWVl8fDDD8cLL7xQ7fGzzz47jj322Crrl112WaX4\ntHv37tGyZcukzETjJUSlqcvKyorjjz8+jj/++Ljhhhti3bp18dxzz8Xvf//7WLduXUJ7b9myJaZO\nnRqPPfZYjB49Oq666qrIzc1N0uQA/yONfywAAAAAAABAY9GQY9QKFVFq9z5tK61XRKnbt1Z9qWiA\nhiAnJye+853vVHvs0UcfTdp1OnToELfffvte70j69NNPx09/+tPIz89P+Fpbt26NH//4x7FgwYJq\nj/fq1Wuvv+ZbbrklRo8eHQMGDIjDDjtMjNrMlZeXR0TUKkSdNm1aPPTQQ2JUmoTu3bvHhAkT4tln\nn41HHnkkLrnkkmjfvn1CexYVFcVjjz0Ww4YNixkzZkRRUVGSpgX4uwbwRwMAAAAAAAA0ZI0hRq0g\nSgUaqxNPPDEGDhxYZT3Ru+J92bHHHhvf/OY393r8j3/8Y3zrW9+KefPm1SlU2rFjR8yZMycmTJgQ\ny5Ytq/acDh06xB133BE5OTn7vT/NhxAV/sdxxx0Xt99+eyxatCh+8YtfxFlnnRUtWrSo834FBQUx\nZcqUGD58eDz99NNRUuJnZCA5vC4JAAAAAAAAe9WYYtQKFVHq0qfXx7oPduxZr4hSR3ynR7Tv5K/J\ngIbnuuuui2XLlkVhYWG9Xmf48OFRWloajzzySLXHt2/fHo888kg8/vjj0b9//zjhhBPiqKOOioMO\nOqjK3VV37doV69evj/fffz+WL18ef/7zn6O4uHiv1z7wwAPjJz/5SRx88MFJ/TXRdJSXl0dGRkat\nQtTrr79ehEqz0qJFixg4cGAMHDgwtm3bFr/97W/j6aefjk2bNtVpvy1btsQ999wTM2fOjAkTJsSQ\nIUMisyH+gA80Gp5pAwAAAAAAUK3GGKNWEKUCjVFeXl6MGzcu7rvvvnq/1sUXXxzt27eP+++/P3bt\n2lXtOTt37ozFixfH4sWLIyIiOzs72rdvH61atYqysrIoKiqKbdu21fqahx12WPzwhz+Mgw46KCm/\nBpoWISrsnw4dOsS4ceNi7NixsXjx4njiiSdixYoVddrr008/jR/+8Ifxm9/8Ju64447o27dvkqcF\nmosG/McEAAAAAAAApMvOwsYbo1aoiFK792lbab0iSt2+1UuTAg3Peeedl7IQaNCgQXHffffFkUce\nWavzS0pKYuvWrbF+/frYuHFjrWPUrKysuPTSS2Py5MliVKooLy+PiKhViDpt2rR46KGHxKjwBdnZ\n2TF48OCYMWNGzJ49O4YMGRLZ2XX7h1erVq2Kq6++Ou66667Iz89P8qRAc9AI/qgAAAAAAACAVNpZ\nWBrzqolRux7eptHEqBVEqUBjk5GRERMnTqxzTLS/evbsGT//+c/jxhtvjG7duiV174yMjDj99NPj\nvvvui7Fjx0aLFi2Suj+NmxAVku/II4+Mu+66K55//vm49tprIy8vr077zJ8/Py655JKYP3/+nt+r\nALXRiP64AAAAAAAAgPpWEaN+9reqMeqZlzauGLWCKBVobHr27Bnf+MY3Una9rKysGDx4cDz44INx\n2223xT/8wz9Eq1at6rzfwQcfHBdffHFMmzYtbr/99ujVq1cSp6WxE6JC/evUqVNMmDAhFi5cGJMm\nTYoOHTrs9x7btm2Lu+66K6688sr44IMP6mFKoCnKKJexAwAAAAAAELWIUbP2HY40dGVlEUufXh/r\nPthRab1dp+wY8Z0e0b5Tau5GCDR8GzduTPcIaVdcXBzvvPNOrF69Oj7++OP45JNPoqCgID7//PPY\nuXNnZGVlRevWraNNmzbRuXPnOOSQQ+LQQw+NY445JuEAtUuXLkn6VdAQVMSk5eXlNUaoEX8PUa+/\n/vq0R6hTbl5V6fPRd/RO0ySNwxN3Vf56TZzs69WQfP755zFr1qyYPXt27Nixo+YHfElGRkaMHDky\nvvOd70Rubm49TAg0FYJUAAAAAAAAmnyMWkGUCtSGIDW9BKlNS23D0oYSolYQpO4fQWrjsG3btpgx\nY0Y89dRTUVxcvN+PP+CAA+JHP/pR9O/fvx6mA5qCRviiKgAAAAAAACRTc4lRIyIyMyNOH3VwdO/T\nttJ6wdaSeOb+tbF9a0maJgOA5unEE0+MadOmxUMPPdRgYlRoqjp06BCTJk2K5557LkaOHBnZ2fv3\nj7G2bNkSN954Y9x9991RVFRUT1MCjZkgFQAAAAAAoBlrTjFqBVEqAKSfEBXSp1OnTnHbbbfF3Llz\n6/T777e//W1ceuml8e6779bDdEBjllFeXl6e7iEAAAAAAABIveYYo35RWVnE0qfXx7oPdlRab9cp\nO0Z8p0e077R/d4wCmo6NGzeme4RmrUuXLukeAWLKzZVfgn70HV6Cfl+euKvy12viZF+vxuTFF1+M\nX/7yl/G3v/1tvx6XmZkZV111VYwfP36/77YKNE3ukAoAAAAAANAMNfcYNcKdUgEAICJi0KBBMW/e\nvBg7dux+haVlZWXx2GOPxZgxY+Kvf/1rPU4INBaCVAAAAAAAgGZGjPo/RKkAABCRk5MTN954Y8yZ\nMydOOOGE/XrsqlWr4vLLL49Zs2ZFWVlZPU0INAaCVAAAAAAAgGZEjFqVKBUAAP6uV69e8fDDD8dP\nf/rT6Ny5c60ft3v37rj33nvj29/+dhQUFF/vZnkAACAASURBVNTjhEBDJkgFAAAAAABoJsSoeydK\nBSps27Yt3SMAQNoNHjw45s6dG0OHDt2vxy1btixGjx4dH374YT1NBjRkglQAAAAAAIBmQIxaM1Eq\nNF+ff/55LFy4MG688cY477zz0j0OADQIubm58U//9E/xL//yL5Gbm1vrx23YsCHGjh0bS5Ysqcfp\ngIZIkAoAAAAAANDEiVFrT5QKzceuXbti8eLF8b3vfS8GDRoUd955Z/z7v/97lJaWpns0AGhQzj77\n7Jg7d26ccsoptX5McXFxfO9734t7773X/1uhGRGkAgAAAAAANGFFn5eJUfeTKBWarpKSknj99dfj\nRz/6UZx77rlx6623xpIlS2LXrl3pHg0AGrTOnTvH1KlT49Zbb41WrVrV+nGzZs2K8ePHR35+fj1O\nBzQUGeXl5eXpHgIAAAAAAIDkK/q8LJ6Zsja2rK8cWnXp1ToGju4mRq1BWVnEK3M+jQ2rP6+03q5T\ndoz4To9o3yk7TZMB+6O8vDzefvvtWLRoUSxevLhWQczZZ5+939c55JBD4qtf/Wocc8wxkZeXV5dR\n+W85OTnpHgFiys2rKn0++o7eaZqkcXjirspfr4mTfb2asjVr1sTtt98e77//fq0fc9BBB8W9994b\nRxxxRD1OBqSbIBUAAAAAAKAJ2meMelm3yMwWo9ZGWWl5vPLkelEqNEIbNmyIZ599Np577rnYsGFD\nvVyjb9++MWTIkDjvvPOiU6dO9XINID0EqftHkNr8lJSUxPTp0+PRRx+NsrKyWj2mZcuW8fOf/zxO\nO+20ep4OSBdBKgAAAAAAQBMjRk0uUSo0Hrt3744lS5bEggUL4s0334z6+Ovw3r17x+DBg2PIkCFx\n8MEHJ31/oGEQpO4fQWrz9fbbb8ctt9wS27Ztq9X5GRkZcccdd8Tw4cPreTIgHTw7BgAAAAAAaELE\nqMmXmZURZ156cJUotWBrSTxz/1pRKjQAq1atinnz5sXvf//7KCgoSPr+3bt3j8GDB8f5558fhx12\nWNL3B4DG6oQTTojHH388brjhhli9enWN55eXl8dPfvKT2LBhQ4wfPz4FEwKp5JkxAAAAAABAEyFG\nrT+iVGh4CgsL43e/+10sWLAg3n///aTv37lz5xg0aFAMGTIk+vbtm/T9AaCp6NKlS/zmN7+J//N/\n/k+89NJLtXrMww8/HJ988kn8+Mc/jqysrHqeEEgVz4oBAAAAAACaADFq/ROlQvqVl5fHm2++GQsW\nLIiXXnopdu3aVfOD9kO7du3inHPOicGDB8dJJ50UmZmZSd0fAJqqnJyc+PnPfx4zZsyI+++/P8rL\ny2t8zAsvvBBbt26NX/7yl5GTk5OCKYH65hkxAAAAAABAIydGTR1RKqTHhg0bYsGCBfHcc8/F+vXr\nk7p3Tk5OnHnmmTF48ODo379/ZGf7PQwAdXX11VfHMcccE7fcckvs2LGjxvPffPPNGDduXNx///3R\nsWPHFEwI1KeM8trk6AAAAAAAADRIYtT0KCstrxKlRkS065QtSoUk2b17dyxZsiQWLFgQb775Zq3u\ntFZb2dnZ0b9//xg8eHCceeaZ7soGVDHl5lWVPh99R+80TdI4PHFX5a/XxMm+Xs3d2rVrY9KkSfHx\nxx/X6vyuXbvGtGnTokePHvU8GVCfBKkAAAAAAACNlBg1vUSpUD9WrVoV8+bNixdeeCG2b9+etH0z\nMjLipJNOiiFDhsSgQYMiNzc3aXsDTY8gdf8IUqlOYWFhfPe734233nqrVufn5eXFtGnTondv//1A\nYyVIBQAAAAAAaITEqA2DKBWSo7CwMJ5//vlYsGBBrFy5Mql79+jRI4YNGxbDhw+Pzp07J3VvoOkS\npO4fQSp7s2vXrrj99tvjlVdeqdX5eXl5MX369OjVq1c9TwbUB0EqAAAAAABAIyNGbVhEqVB3q1at\niscffzwWLVoUxcXFSdu3VatWcfbZZ8fw4cPj5JNPTtq+QPMhSN0/glT2pby8PO65556YO3durc4X\npULj5dkvAAAAAABAIyJGbXgyszLizEsPrhKlFmwtiWfuXytKhS8pKSmJJUuWxFNPPRV/+ctfkrr3\nV7/61Rg+fHicf/750bZt26TuDQDUTUZGRtx2223RpUuXuP/++2s8Pz8/P6699tp47LHHomfPnimY\nEEgWz3wBAAAAAAAaCTFqwyVKhZrl5+fH3LlzY+7cubF58+ak7duhQ4c4//zz4+KLL47DDz88afsC\nAMl1zTXXRNeuXeNHP/pRlJWV7fPciih1+vTpolRoRDzrBQAAAAAAaAR2FYlRGzpRKlRvxYoVMWfO\nnHjxxRejpKQkKXtmZGREv379Yvjw4XHWWWdFdrbfWwDQGJx//vnRqVOnuPnmm2PXrl37PHfLli2i\nVGhkMtM9AAAAAAAAAPu2q6gsnrl/nRi1EaiIUrse3qbSekWUun1rcmI8aOh2794dCxcujLFjx8bV\nV18dL7zwQlJi1IMPPjjGjx8fv/vd72LKlClx7rnnilEBoJHp169fPPjgg5GTk1PjuRVR6qeffpqC\nyYBE+ckcAAAAAACgAauIUTetLa603rlHjhi1gXKnVJqzzZs3x1NPPRXPPPNMfPbZZ0nZs2XLlnHW\nWWfF8OHD45RTTomMDN/3AKCx+9rXvhb33Xdf3HjjjVFUVLTPc7ds2RLXX399/PrXv44DDjggRRMC\ndeGZLgAAAAAAQAO1rxj17Cu6i1EbMFEqzc1bb70VTz75ZLz88stRWlqalD2PPPLIuPDCC2Po0KHR\nrl27pOwJADQcJ554Ytx3330xceLE2LVr1z7P3bBhQ3z729+ORx99NNq2bZuiCYH9lZnuAQAAAAAA\nAKiqphg1q4UYtaGriFK7Ht6m0npFlLp9a+IvXw7pVFxcHM8880xcdtllcf3118fixYsTjlHbtWsX\no0aNilmzZsXs2bPj0ksvFaMCQBN24oknxuTJk6Nly5Y1nvvhhx/GpEmTYvfu3SmYDKiLjPLy8vJ0\nDwEAAAAAAMD/EKM2LWWl5VXulBoR0a5Ttjul0iitX78+nnzyyXj22WejoKAgKXseffTRMWrUqDjv\nvPOiVatWSdkTIBFTbl5V6fPRd/RO0ySNwxN3Vf56TZzs68X++dOf/hSTJk2KkpKa/9HWGWecEb/4\nxS8iM9O9GKGh8bsSAAAAAACgARGjNj3ulEpT8cYbb8TNN98cF154YcyaNSvhGLVVq1YxbNiwmD17\ndvzmN7+JYcOGiVEBoJnq169f/OIXv4isrKwaz3311Vfjpz/9aQqmAvaXf24JAAAAAADQQIhRm66K\nKPXLd0qtiFLdKZWGqqioKJ577rl48skn46OPPkrKnt26dYvLLrsshg0bFu3atUvKngBA43f66afH\nPffcE7feemuUlpbu89xnn302unfvHuPGjUvRdEBteFYLAAAAAADQAIhRmz5RKo3Jpk2b4sknn4x5\n8+bF9u3bE94vMzMzBgwYEKNGjYp+/fpFRobvaQBAVQMHDoyf/vSncdttt9V47gMPPBBdu3aNoUOH\npmAyoDY8owUAAAAAAEgzMWrzIUqloXvvvfdi9uzZ8eKLL9Z4Z7La6NSpU1x00UUxatSoOPDAA5Mw\nIQDQ1A0aNChuvPHGuO+++2o8984774y8vLzo379/CiYDauLZLAAAAAAAQBqJUZsfUSoNTWlpabz0\n0ksxe/bseOedd5Ky5wknnBAjR46Mc845J7Kz/fcMAOyfsWPHxvr16+Ppp5/e53llZWXxj//4j/Hr\nX/86evfunaLpgL3xkz8AAAAAAECaiFGbr4oo9eUnPo2NH+3csy5KJZU+//zzeOaZZ+KJJ56IDRs2\nJLxfmzZtYujQofGNb3wjDj/88CRMCAA0Z9/73vdi48aN8eqrr+7zvOLi4pg0aVLMmjUrOnbsmKLp\ngOpkpnsAAAAAAACA5kiMSmZWRgy8rFt06dW60npFlLp9a0maJqOp27RpU/zrv/5rDB06NCZPnpxw\njPqVr3wlbrvttli0aFHcdtttYlQAICkyMjLinnvuieOPP77Gczdu3Bg33XRTlJT4GRrSSZAKAAAA\nAACQYmJUKmRm7ztKLcz3F+okz6pVq+KHP/xhDBs2LGbOnBmFhYV13is7OzvOO++8ePjhh+PJJ5+M\nkSNHRuvWrWt+IADAfmjRokX867/+axx66KE1nvvuu+/GXXfdlYKpgL3xOh8AAAAAAAAptLu4POY/\nIEblf1REqa88+Wls+OvOPesFW0vit79aG5fc0CNy8/y1HnX32muvxeOPPx5//vOfE94rLy8vRo8e\nHSNGjIhOnTolYToAgH1r27ZtTJs2La688srYvHnzPs9duHBh9OnTJ6644ooUTQd8kWeuAAAAAAAA\nKfL3GHVt/O0TMSqVZWZnxJmXdouX53waGz8SpZK4kpKSWLRoUcycOTNWrVqV8H5f/epXY/To0XHe\needFdrb/FgGA1DrwwANj2rRpcfXVV9d4l/d77703+vTpE6eeemqKpgMqZKZ7AAAAAAAAgOagIkbd\nuKZyjHpAt1ZiVCLif+6U2qVX5Zc9r4hSC/NL0jQZjUlRUVE8/vjjcdFFF8WPfvSjhGLUzMzMOOec\nc2L69Okxc+bMGDp0qBgVAEibXr16xZQpU2r8eaS8vDy+973vxUcffZSiyYAKglQAAAAAAIB6ts8Y\ndUwPMSp7iFKpq/z8/Jg6dWqcf/758ctf/jI2bNhQ571yc3NjzJgx8bvf/S7uueeeOP7445M4KQBA\n3fXt2zfuvPPOGs8rLCyMSZMm1Xg3VSC5BKkAAAAAAAD1qKYYNbulGJXK9hWlzpuyTpRKJevXr4+7\n7747hg4dGo888kgUFBTUea9u3brFLbfcEi+88ELcdNNNceCBByZxUgCA5BgyZEiMGTOmxvPWrVsX\n//iP/xilpaUpmAqIiMgoLy8vT/cQAAAAAAAATZEYlUSUlZTHy3M+jY0f7ay03q5TdlxyQ4/IzfPS\n6c3Z6tWr46GHHoolS5ZEWVlZQnsdc8wxMWbMmDjnnHMiM9M9jQAiIqbcvKrS50f2y0vTJI3D+3/K\nr/T5xMm90zQJzUVZWVlMnDgx3nzzzRrPHTNmTNx0000pmAoQpAIAAAAAANSD3cXlMX/qutj4cVGl\n9c49cuKsy7uLUamVfUWpoyb1jDbts9I0GemybNmymDFjRrzxxhsJ7ZORkRFnnHFGjBkzJk444YQk\nTQfQdHw5SGX/CFJJhcLCwhgzZkysXbu2xnPvu+++6N+/fwqmguZNkAoAAAAAAJBk7oxKMu0tSu3Q\nuUVcckMPUWozUF5eHq+88krMmDEjVqxYkdBerVq1igsuuCCuvPLK6NGjR5ImBGh6BKmJEaSSKh99\n9FFceeWVsXPnzn2el5ubG48//nh069YtRZNB8yRIBQAAAAAASCIxKvVBlNo8lZSUxAsvvBC//vWv\n469//WtCe3Xo0CFGjRoVl112WeTledlpgJoIUhMjSCWVli5dGjfddFON5/Xp0ydmzpwZ2dnZKZgK\nmidBKgAAAAAAQJKIUalPotTmo6ioKObPnx+zZs2KDRs2JLTXwQcfHFdccUVcdNFFkZOTk6QJAZq+\nt5Z8lu4RGrUTz+6Y7hFoZh588MF4+OGHazzvkksuidtvvz0FE0HzJEgFAAAAAABIAjEqqSBKbdoK\nCwvjySefjCeeeCLy8/MT2uuII46IsWPHxrnnnhtZWf67AACatvLy8rj55ptj6dKlNZ579913x7nn\nnpuCqaD5EaQCAAAAAAAkSIxKKolSm55t27bFrFmz4umnn47CwsKE9jrllFPiqquuiq9//etJmg4A\noHH4/PPPY+zYsfHRRx/t87ycnJx44oknomfPnimaDJoPQSoAAAAAAEACxKikgyi1adi8eXPMmDEj\n5s+fH0VFRXXeJyMjI84+++y45ppr4qijjkrihAAAjcuaNWvi8ssvr/Fnq8MOOyxmzpwZOTk5KZoM\nmgdBKgAAAAAAQB2JUUknUWrjtW7dunjsscdi4cKFUVJSUud9srOzY+jQoXHNNde4wxcAwH9btGhR\n/OAHP6jxvEGDBsXPfvazFEwEzYcgFQAAAAAAoA5KdpXHM/eLUUmvspLyWDxrXWxeW/kOUB06t4iR\nk3pE61xRakPy0UcfxfTp0+MPf/hDlJWV1XmfnJycuPjii2Ps2LHRuXPnJE4IANA03HXXXTF//vwa\nz/v+978fF198cQomguZBkAoAAAAAALCfSnaVx7PT1sX6v1aOAMWopEPp7vJYMrtqlNrxoBZx8Q2i\n1IZg1apV8fDDD8fixYsT2qdDhw5x6aWXxujRo6Ndu3ZJmg4AoOkpLi6OK6+8MlavXr3P87Kzs2PO\nnDnRq1evFE0GTZsgFQAAAAAAYD/sLUbt2LVVDBorRiU9RKkN03vvvRcPP/xwvPbaawntc9BBB8WY\nMWPi4osvjpycnCRNBwDQtK1ZsyYuv/zyKCoq2ud5vXv3jpkzZ0aLFi1SNBk0XYJUAAAAAACAWtpX\njHrOld2jRavMNE0GotSG5J133olp06bFn/70p4T26dmzZ1x11VVxwQUXRHZ2dpKmAwBoPhYtWhQ/\n+MEPajzv8ssvj+9+97spmAiaNkEqAAAAAABALYhRaQxEqen1xhtvxCOPPBJvv/12Qvv07t07rrnm\nmjj33HMjM9P3FgCARPzTP/1TLFiwoMbzHnzwwTjppJNSMBE0XYJUAAAAAACAGohRaUxEqan3+uuv\nx8MPPxwrVqxIaJ++ffvGuHHj4owzzkjSZAAAFBcXx5VXXhmrV6/e53mdO3eOp556Ktq3b5+iyaDp\nEaQCAAAAAADsgxiVxkiUmhqvvvpqTJ8+Pd57772E9jn55JNj3LhxceqppyZpMgAAvmjNmjVx+eWX\nR1FR0T7PGzBgQEyePDlFU0HTI0gFAAAAAADYCzEqjZkotf68/PLLMX369Fi5cmVC+5x22mkxfvz4\nOProo5M0GQAAe7No0aL4wQ9+UON5P/jBD2LEiBEpmAiaHkEqAAAAAABANcSoNAX7ilIvmdQzctr4\n77i2ysvLY8mSJTF9+vT44IMPEtrrrLPOivHjx0fv3r2TNB0AALVxxx13xAsvvLDPc1q2bBlPPfVU\n9OjRI0VTQdMhSAUAAAAAAPgSMSpNyd6i1AMObhkjJvYQpdagrKwsXnzxxXjkkUfiww8/rPM+mZmZ\nce6558Z1110XvXr1SuKEAADUVmFhYYwcOTI2b968z/OOOuqomDFjRmRnZ6doMmgaBKkAAAAAAABf\nIEalKSrdXR6LZ66NLZ8WV1oXpe5dWVlZ/OEPf4jp06fHRx99VOd9srKyYujQoXHttddG9+7dkzgh\nAAB1sWzZspgwYUKN51199dUxceLEFEwETYcgFQAAAAAA4L+JUWnKSnaVx5JZotSalJaWxvPPPx+P\nPfZYrFmzps77tGjRIi688MIYN25cdOnSJYkTAgCQqHvvvTdmzZpV43kzZsyIvn37pmAiaBoEqQAA\nAAAAACFGpXkQpe5dSUlJzJ8/P37961/H+vXr67xPy5YtY8SIEXHNNddE586dkzghAADJsnv37hg9\nenSNd8Lv0aNHzPn/7N13dFT1usbxJ4VkUkijJKEjXYoeigJiQbGcC0hVEKSpdAQU9HrUc8BzPTaK\niCBVRJpiAQQUFFQUqYIC0kIRJBEIJRBISGEyc//wBIl7zySZmUza97NW1kre/du//QLJhEyeefeH\nH8pisXipM6B4I5AKAAAAAAAAAABKPcKoKE0IpeaUkZGhTz/9VAsWLNC5c+dc3icwMFBdu3ZV//79\nVa5cOQ92CAAAgIJw+PBh9enTR1ar1em63r1766mnnvJSV0DxRiAVAAAAAAAAAACUallX7VoxgzAq\nShdCqVJaWpqWLl2qxYsX68KFCy7vY7FY1L17d/Xr10+RkZEe7BAAAAAFbeHChXrrrbdyXTd//nw1\natTICx0BxRuBVAAAAAAAAAAAUGplXbVr1ZyTSjiclqNOGBWlQWkNpaakpGjJkiX64IMPdPnyZZf3\nCQoK0sMPP6y+ffsqPDzcgx0CAADAW+x2ux5//HHt2bPH6boqVaroww8/lMVi8VJnQPFEIBUAAAAA\nAAAAAJRKjsKo4RUCdG//KoRRUSo4C6V2G1lFAZaS83Vw+fJlLVq0SEuWLFFaWlruJzgQFBSknj17\nqnfv3oqIiPBghwAAACgMp0+fVo8ePZSamup03SOPPKIxY8Z4qSugeCKQCgAAAAAAAAAASh1nYdR7\n+lZRYFDJCeEBuXEUSq1QJVBdhlcu9qHUlJQUffDBB1q8eLFSUlJc3ic0NFQ9e/bUo48+qtDQUA92\nCAAAgML2xRdf6F//+leu6+bPn69GjRp5oSOgeCKQCgAAAAAAAAAAShXCqIBRSQylpqena8mSJVq0\naJEuXbrk8j6hoaF65JFH1Lt3b4KoAAAAJdhzzz2n9evXO11TpUoVffjhh7JYLF7qCiheCKQCAAAA\nAAAAAIBSgzAq4FhJCaWmp6fro48+0oIFC3Tx4kWX98meiNq7d2+VLVvWgx0CAACgKEpJSVGnTp2U\nnJzsdF3Pnj01duxYL3UFFC8EUgEAAAAAAAAAQKlAGBXInTXTrvULEnThdPELpWZmZurjjz/W+++/\nr6SkJJf3CQkJuTYRlSAqAABA6bJ+/Xo999xzua6bO3eubr75Zi90BBQvBFIBAAAAAAAAAECJRxgV\nyLurGTZ9vfD3YhNKvXr1qpYtW6b33ntP586dc3mfkJAQ9ejRQ3369CGICgAAUIqNHj1aP/zwg9M1\nMTEx+uSTT2SxWLzUFVA8EEgFAAAAAAAAAAAlGmFUIP+KQyjVarVqxYoVmjdvns6cOePyPsHBwerR\no4ceffRRhYeHe7BDAAAAFEfnz59Xt27dlJKS4nRdz549NXbsWC91BRQPBFIBAAAAAAAAAECJRRgV\ncF1RDqV++umnmjdvnhITE13ew2KxqGfPnurTpw9BVAAAAOTw+eefa9y4cbmumzdvnpo0aeKFjoDi\ngUAqAAAAAAAAAAAokQijAu5zFkrtOqKKygT6eK2XrKwsrVmzRnPnzlVCQoLL+wQFBenhhx9W3759\nCaICAADAoeHDh2vbtm1O11SvXl1Lly6Vv7+/l7oCijYCqQAAAAAAAAAAoMQhjAp4jqNQanS1QHUe\nVvChVJvNpq+++kqzZ8/WiRMnXN7HYrGoR48e6tOnjyIiIjzYIQAAAEqiM2fOqFu3bkpLS3O6btiw\nYXrssce81BVQtBFIBQAAAAAAAAAAJQphVMDzCiOUarfbtX79es2aNUvHjx93eR+LxXJtIipBVAAA\nAOTHsmXL9MorrzhdU6ZMGX3yySeqXLmyl7oCii4CqQAAAAAAAAAAoMQgjAoUHG+FUu12u7799lvN\nnj1bR44ccXkfi8Wihx56SP369SOICgAAAJcNHDhQP//8s9M1zZo106xZs7zUEVB0EUgFAAAAAAAA\nAAAlgi3LrpWzCKMCBamgQ6nff/+9Zs2apbi4OJf3sFgs6t69u/r3708QFQAAAG47efKkHnroIWVk\nZDhd99JLL6l9+/Ze6goomgikAgAAAAAAAACAYs+WZdfquad04uCVHHXCqIDnFUQoddOmTZo1a5b2\n79/vcl/ZQdS+ffsqKirK5X0AAACAv1qyZIkmT57sdE14eLhWrFihsmXLeqkroOghkAoAAAAAAAAA\nAIo1R2HUsHJl1K5/VcKoQAG4mmHTuvkJSj6bmaOe31Dqtm3bNHPmTP3yyy8u9xIYGKju3burX79+\nBFEBAABQIOx2uwYMGKC9e/c6XdehQweNHz/eS10BRQ+BVAAAAAAAAAAAUGw5DaP2q6LAYL9C6gwo\n+TLSbPp6gWuh1F27dmnatGnatWuXy9cPDAxUt27d1L9/f4KoAAAAKHDHjx9Xz549ZbVana6bOXOm\nmjdv7qWugKKFQCoAAAAAAAAAACiWCKMChc9ZKLXL8CryD8gZSv3ll180ffp07dixw+VrBgQEqFu3\nbhowYABBVAAAAHjVtGnTNH/+fKdrKlWqpE8++UQBAQFe6gooOgikAgAAAAAAAACAYocwKlB0OAql\nxta0qNOQyvIP8NH+/fv1zjvvaOvWrS5fJyAgQF27dlX//v1Vvnx5d9sGAAAA8i09PV3dunVTYmKi\n03WPP/64hg4d6qWugKKDQCoAAAAAAAAAAChWCKMCRY+jUGp4tE0/nZqtjZs2uLw3QVQAAAAUJZs2\nbdKoUaOcrvHz89PSpUtVo0YNL3UFFA2+hd0AAAAAAAAAAABAXhFGBYqmwCBf3dO3isIr5LwtaXKi\nr0Iv3yV/38B871mmTBn16NFDK1eu1NixYwmjAgAAoEi47bbb1LZtW6drsrKy9J///MdLHQFFBxNS\nAQAAAAAAAABAsUAYFSj6HE1KTUw+qHV7X5XVlpHrHmXKlFGXLl302GOPEUIFAABAkXTu3Dl16tRJ\nGRnO/3/7yiuv6L777vNSV0DhI5AKAAAAAAAAAACKPMKoQPHhaii1TJky6ty5swYMGKCKFSt6o1UA\nAADAZUuWLNHkyZOdrilfvrxWrFghi8Xipa6AwkUgFQAAAAAAAAAAFGmEUYHiJz+hVH9/f3Xu3FmP\nPfYYQVQAAAAUG1lZWerdu7eOHDnidF3//v01YsQIL3UFFC4CqQAAAAAAAAAAoMgijAoUXxlpNq2f\nH69L56/mqGeHUuWbRRAVAAAAxdr+/fvVt29fp2v8/f318ccfq2rVql7qCig8BFIBAAAAAAAAAECR\nRBgVKP4yrmRp/fsJhlCq1f+sej5VSzGVCKICAACgeHvttdf0ySefOF1z6623avr06V7qCCg8voXd\nAAAAAAAAAAAAwF8RRgVKhsBgP7XrV0Vh5crkqPtbK2jriqvKusrsHAAAABRvTz75pCIiIpyu2bZt\nm3744QcvdQQUHgKpAAAAAAAAAACgTxBxaQAAIABJREFUSLHZRBgVKEEchVITDqdp1ZyThFIBAABQ\nrIWEhGjs2LG5rps4caKsVqsXOgIKD4FUAAAAAAAAAABQZNhs0pp5hFGBkoZQKgAAAEqyBx54QM2b\nN3e6JiEhQQsWLPBSR0Dh8LHb7fx0BwAAAAAAAAAACl12GPXYvtQcdcKoQMmRcSVL699P0KXzV3PU\nq9QJUseBleRXxqeQOgMAAADcEx8fr4ceesjpFFSLxaIVK1aofPnyXuwM8B4mpAIAAAAAAAAAgELn\nKIwaGkkYFShJmJQKAACAkqpq1arq0aOH0zXp6emaNGmSlzoCvI9AKgAAAAAAAAAAKFTOwqj3EkYF\nShxCqQAAACipBg0apIiICKdr1q1bpw0bNnipI8C7CKQCAAAAAAAAAIBCk1sY1RJKGBUoiQilAgAA\noCQKCQnRyJEjc103ceJEZWZmeqEjwLsIpAIAAAAAAAAAgEJBGBUo3XILpdqyCKUCAACg+HnwwQdV\nt25dp2tOnz6thQsXeqkjwHsIpAIAAAAAAAAAAK8jjApA+jOUGhppDKWunnuKUCoAAACKpeeffz7X\nNe+9956SkpK80A3gPQRSAQAAAAAAAACAVxFGBXC9wGA/3WsSSj1x8AqhVAAAABRLjRo1Uvv27Z2u\nSU9P1zvvvOOljgDv8LHb7fwEBwAAAAAAAAAAvIIwKgBH0lOytO79BKVcuJqjXq1+sDo8EStfP59C\n6gwAAADIvwsXLqhjx45KT093uMbHx0cffPCBateu7cXOgILDhFQAAAAAAAAAAOAVhFEBOGMJZVIq\nAAAASo7IyEg98cQTTtfY7XZNmTLFSx0BBY9AKgAAAAAAAAAAKHCEUQHkBaFUAAAAlCSPPvqoqlSp\n4nTN1q1btWPHDi91BBQsAqkAAAAAAAAAAKBAEUYFkB+EUgEAAFBS+Pv7a+zYsbmumzBhghe6AQoe\ngVQAAAAAAAAAAFBgCKMCcAWhVAAAAJQUbdq00a233up0zdGjR7V8+XIvdQQUHB+73c5PawAAAAAA\nAAAAwOPsNukLwqgA3JCekqV17yco5cLVHPVq9YPVYWAl+TJ+BwAAAMVAfHy8HnroIVmtVodrIiMj\ntXLlSgUFBXmxM8CzCKQCAAAAAAAUMTabrbBbAACX+JIKwnXsNmntgtM6ujslR50wKoD8chRKrdkw\nRH9/LJZQKgAAAIqFKVOmaNGiRU7XDBgwQMOHD/dSR4DnEUgFAAAAAAAoYhITEwu7BQBwSXR0dGG3\ngCKCMCoATyOUCgAAgOIuJSVFnTt31sWLFx2uCQgI0IoVK1SxYkUvdgZ4Dj+aAQAAAAAAAAAAj3EU\nRg2J8CeMCsBlllA/3duvikIi/HPUj+1L1Zp5p8RNBgAAAFDUhYaGatiwYU7XZGZmaurUqV7qCPA8\nAqkAAAAAAAAAAMAjnIVR2/UljArAPZZQP7XrSygVAAAAxVeXLl1Us2ZNp2vWrl2r/fv3e6kjwLMI\npAIAAAAAAAAAALflFkYNDvN3cCYA5F1wmD+hVAAAABRbPj4+GjVqVK7rJk6c6IVuAM8jkAoAAAAA\nAAAAANxCGBWANxFKBQAAQHHWpk0bNWnSxOmaPXv2aMOGDV7qCPAcAqkAAAAAAAAAAMBlhFEBFAZC\nqQAAACjOnn322VzXTJ06VVlZWV7oBvAcAqkAAAAAAAAAAMAlhFEBFKbcQql2QqkAAAAoourXr6/7\n7rvP6ZoTJ05o+fLlXuoI8AwCqQAAAAAAAAAAIN8IowIoCpyFUtcuOE0oFQAAAEXWiBEj5O/v/Gfn\nWbNmKS0tzUsdAe4jkAoAAAAAAAAAAPKFMCqAosRRKPXo7hRCqQAAACiyKlWqpJ49ezpdc+HCBS1Y\nsMBLHQHuI5AKAAAAAAAAAADyjDAqgKKIUCoAAACKoyeeeEIhISFO1yxcuFBJSUle6ghwj4/dbrcX\ndhMAAAAAAAD4U2JiYmG3AKCESU5O1pgxY3Tq1Kkc9bvvvlvff/+9rFbrtZq/v79eeukl3Xzzzfm+\nTnR0tNu9omgjjAqgqLtyyar1CxKUetGao17rplA90DdGPozrAQAAQBGzaNEiTZkyxemaLl266IUX\nXvBSR4DrCKQCAAAAAAAUMQRSAXhSZmamXnzxRe3bty9HvXXr1nr++ee1fv16wy89QkJCNHHiRFWr\nVi1f1yKQWrIRRgVcY7PZdODALzpw4BcdPPiLEhJ+U0rKZV2+fElW61WFhIQqJCRUYWERqlWrnurX\nb6SGDW9W5cpVC7v1YuvKJau+ei9BaZcJpQIAAKDos1qt6tKli+GFxNfz9fXV8uXLVblyZS92BuQf\ngVQAAAAAAIAihkAqAE+aMGGCNmzYkKNWq1YtvfHGG7JYLJKkd999V8uWLcuxpmLFinrzzTcVERGR\n52sRSC257HZp7fuEUYH8SE6+qLVrV+iLL5bp9OmT+T6/ceO/6X/+p5vuuKOd/P35Gsuv1GSr1s0n\nlAoAAIDi4auvvtLzzz/vdM3dd9+tN954w0sdAa4hkAoAAAAAAFDEEEgF4Ckff/yx5s+fn6MWEhKi\nadOmqWLFitdqNptNL7zwgvbs2ZNjbcOGDfXqq6/Kz88vT9crqYHU5s2bG2rNmjXT008/rXr16hVC\nR95lt0vrFifq0M7LOeqEUQHHvv32S82YMUHJyRfd3qt27Xp6+ulxqlWrrgc6K10IpQIAAKA4efTR\nR3Xw4EGnaxYsWKAbb7zRSx0B+cePWQAAAAAAAAAK3Lfffqv27dtfe1u8eHFht1TixcXFadGiRYb6\nsGHDcoRRpT9u+/bUU08pJCQkR33fvn368MMPC7TP4mrnzp3q3bu3xo8fr5Mn8z/5sLggjFryfPPN\nGt1/f/NrbwsXzirslkoUq9Wq1157Ua+99oJHwqiSdORInEaO7Ks1a1Z4ZL/SJCTcX/f2r6Kgsjkf\nq47uTtHaBafF2B4AAAAUJU8//XSuayZPnuyFTgDXEUgFAAAAAAAAUOAOHTpU2C2UKmlpaZowYYKs\n1pwT4dq0aaO77rrL9JyKFStqyJAhhvqHH36o/fv3F0ifJcHq1av14IMPlshgqqMwalBZwqjFWVzc\nvsJuocSyWq16/fUX9e23awtk7ylTXta6das9vndJ5yyUum5xIqFUAAAAFBlNmzZVy5Ytna7ZtWuX\ntm7d6qWOgPzj2SIAAAAAAAAABe7w4cOF3UKpMmfOHJ06dSpHLTIyUsOHD3d63t13362tW7dq06ZN\n12o2m00TJkzQjBkzZLFYCqTfkmD16tVavXq1OnTooEGDBqlSpUqF3ZJbnIVR7+1PGLU4O3SIgHlB\nmTfvbX3//XqHx6Oiyuvuu/+uxo3/pho1aqts2TAFBlqUmpqiCxfO6/DhA9qxY4t++OFrwwsKsk2e\n/G9Vr15Ldes2KKg/RomUHUpdNz9BaZf//LvNfoy7t3e0fHwKqzsAAADgTyNHjsw1cDplyhTuaIMi\niwmpAAAAAAAAAApUVlaWfv3118Juo9SIi4vTl19+aaj37dtXYWFhuZ7/xBNPKCAgIEftzJkz+uij\njzzWY0lWEiam5hZGDQknjFpcZWVl6ejRuMJuo0Q6eHCvli1bYnrMYrFo2LBntHDhag0cOEotW96h\nmJhKCgkJlb+/v8LDI1SjRi3de28H/eMf/9HChZ/rjjvame5ls9k0Y8YE2RnrmW+OJqUe2nmZSakA\nAAAoMurWrat27cx/Hsh25MgR0+d+gKKAQCoAAAAAAACAAvXbb78pIyOjsNsoFex2u2bNmmWo16xZ\nM9dfZmSrWLGiOnfubKgvX75cp0+fdrvH4iw7AJaXIFhxDaYSRi3Zjh8/yuNxAXn77ddMHxvCwyP0\n1lvvq1OnHvL3z9vXT1RUOb3wwmt69NFBpsf379+jH3/c7Fa/pRWhVAAAABQHI0aMkK+v81jf9OnT\nlZWV5aWOgLwjkAoAAAAAAACgQB0+fLiwWyg1vv76a8XFGacfDhw4MNdfZFzv4YcfVkRERI5aZmam\n5s6d63aPJYHPf+/rnJ9g6uzZs3X58uVc1xcmwqgl36FD+wu7hRLp4MG9OnLkoKHu7++v//xnmmrU\nqOXSvn36DNLtt99jemzz5g0u7QlCqQAAACj6qlSpogcffNDpmpMnT2r58uVe6gjIOwKpAAAAAAAA\nAArUoUOHCruFUiErK0tLlhhvF92kSRPddNNN+dorKChI3bt3N9S3bNmiI0eOuNxjSZOfYOrs2bPV\nsWPHIhtMJYxaOsTF7SvsFkqktWtXmNa7dXtUderUd2vvJ54YZVrftm2jW/uWdoRSAQAAUNQNGTIk\n17sszJkzh7tgoMjhGSQAAAAAAACUGsnJydqyZYt+/vln/fbbb0pKSlJ6eroCAgJUtmxZlStXTg0a\nNNDNN9+spk2bXgubeYrdbteBAwf0888/69ChQzp16pQuXLigjIwM+fr6KigoSOXKlVPlypV14403\n6pZbblFsbKxHeygMTEj1jk2bNikxMdFQ79Spk0v73XfffVq8eLHS0tJy1JcvX65nnnnGpT1LquuD\nqc4eN1JSUjR79mwtWbJEvXr10iOPPKKyZct6q02HCKMWntTUFG3d+r0OHz6gX389rDNnTunKlVRd\nuZIqu90uiyVIwcEhiomprKpVa6hBg8Zq0eI2RUREunS9w4cLZkJqZmamfvppm/bs2akjRw7qzJlT\nunjxgjIy0uXr6yuLJUhRUeUVE1NZdes20E03tVCjRjfna3KzO+Li9mnz5g2Ki9unhITfdPnyJWVm\nZiggIFBRUeVUrdoNuumm5rrzzvtUrlz5fO+/ffsmQ83f319duvRyu/eYmEqqX7+RDh7cm6OelHRO\n6enpslgsbl+jtMoOpX41L17pqX/e6jT7sfDe3tHy8H8FAQAAgDwrX768evbsqUWLFjlcc/78eX3w\nwQfq37+/FzsDnPOx5+Wl2wAAAAAAAPAas0AZHBs/frx+/PHHHLX7779fI0eOvPZxenq6Fi9erM8/\n/zzPUwOqVaumAQMG6JZbbnG7R6vVqrVr12rZsmX5/vdt2LChevTooWbNmuX5nPXr1+vNN9801GvX\nrq3JkyfLz88vXz1kS05O1pAhQ3Tp0iXDsVdffVVNmjRRRkaGunbt6tL+ktS4cWO99tprLp9fmo0e\nPdoQ/o2NjdXs2bNdDn3NmjVLK1euzFHz8/PT3LlzVbFiRcP66Ohol65T1DVv3lxS7oHTbHldFxoa\nWujBVMKohePEiWNasGCmtm79XlevXs3XuT4+PmrRorV69BigRo1udrguIyNDDz54m8s9NmnSVBMm\nzHa6JinpvD75ZKHWrl2h1NSUfO0fFVVenTr1UKdOPRUUFJTv/p54orvi44/nqN13X0eNGTPu2sdH\njsRpxowJ2rt3V5729PX11X33ddSAASPyHPo9f/6cevV6wFBv3ryV/vOft/O0R26mTXtdq1Z9bKjP\nn/+ZYmMre+QapVnKhataNz8hRyhVkuo2K6v7ekdLhFIBAABQSC5evKgOHTooPT3d4ZrQ0FCtXr1a\noaGhXuwMcMw7Lz0FAAAAAAAACkhISIihduXKlWvvnz59WqNGjdKyZcvydQurEydO6KWXXtLSpUvd\n6u/IkSN68sknNWPGDJfCxvv27dO//vUvvfrqq0pNTc3TOe3atVPr1q1Ne1mxwvy2wnkxe/Zs0zBq\n165d1aRJE5f3hfv27dtnOom2Q4cObk0gfPDBBw21rKwsrVq1yuU9S4PrJ6Y6mwmRPTG1Y8eOmj17\nti5fvuxwbUEgjOp9drtd778/Q0OHPqKNG7/Odxg1e4/t2zdpzJgnNHXqq8rMzCyATnO3bt1qPfFE\nN3366aJ8h1GlPyZ8vvfedA0c2F0//bQt3+eHhhpD3BcvXrj2/jffrNHo0f3zHEaVJJvNprVrP9PQ\noY8YJpI6cvJkvKKjYxUSkvOXv/XqNczzdXMTHm4ejk1J8e5jRkkVGllG9/avIktIzhfsHNp5WV8v\nPSMx2gcAAACFJCIiItfppykpKZo/f76XOgJyRyAVAAAAAAAAxVpAQIChln2L8bNnz+q5555TQkKC\ny/svWLBAGzdudOncLVu26Nlnn9WJEydcvn62H374QWPGjNG5c+fytH7EiBGKiIgw1BcvXqzTp0/n\n+/o//fSTNmzYYKjXqFFDffr0yfd+8KzvvvvOUPPx8dEdd9zh1r6xsbGqV6+eof7DDz84DVriDz4+\nPjnCqY4URjCVMKr32e12TZnyspYseVdWq9Uje37++acaN+4pj+2XV7NnT9HEieNdCqL+1dmziXrh\nhSe1Zk3+XjAREBBoqF258kc/W7Z8pwkTxrkU+JX+CMs+99wwHTkSl+vaxo3/pgULVmnZsg1as2a7\nPvnkG7333gp16dLLpWubycgwn4b01xAsXOcolHpg2yVCqQAAAChUvXv3Vnh4uNM1S5YsyfNzhkBB\n4xklAAAAAAAAFGv+/sanuDIyMmS1WvXqq6/q7Nmz1+ohISFq0aKFatSoocjIP6aNXbp0ScePH9eO\nHTuUnJxseo133nlHzZs3z9cthX/++We99tprDkNCjRs3VsuWLVW1alVFRkYqMzNTFy5c0IEDB7R9\n+3bFx8cbzomPj9c///lPTZw40XQy7PXCw8M1evRojR8/Pkc9IyND06ZN08svv5znP0t6erqmT59u\nqPv7+2vs2LGmoWB4j81m0+bNmw31G2+8UVFRUW7v37p1a8XF5QxlnTlzRnFxcapfv77b+5cW1wdT\ns9//q+xg6qpVqzR48GB16NChQHohjFo4vvhimdau/cz0WEREpFq0uE01a9ZRdHSsgoKCJUlXrqTq\n9OnfdejQfu3YsUVXrhgnZf/00zbNm/e2Bg16qkD7z7ZgwUx9+uki02N+fn5q3LipWrW6U7GxVRQV\nVV42W5YuXDivEyeOafPmDTpw4BfDeTabTW+99R+FhYXrttva5qkPs+//V66k6ty5M5o4cbxsNtu1\nelRUOTVr1ko1atRWWFi4srKydP78We3d+7N27frRNDCelnZF//73WM2a9VGev//7+vqqbNkwlS0b\nlqf1eXX2rPmE9fBw4wtP4LrsUOq6+QlKT826Vj+w7Y/p8Pf0qCiZP3wDAAAABSYoKEgDBw7UxIkT\nHa7JzMzU3Llz9dxzz3mxM8AczyoBAAAAAACgWDO7HXlmZqY+/fTTayE6i8WiRx55RJ06dVKZMmVM\n98nMzNSSJUv08ccfG45dunRJ33//ve6///489XTp0iVNnjzZNIxavXp1DR8+XA0bmt/Kt1WrVhow\nYIC+/fZbzZo1SykpOafPnThxQjNnztSYMWNy7aNFixZ64IEHtHbt2hz1n3/+WevXr1e7du3y9Odx\nNFW1T58+qlmzZo5aYGCgFi5ceO3js2fP6umnnzac27VrV3Xp0sVQNwsYwbm9e/fqwoULhnqrVq08\nsv9tt92m9957z1DfuHEjgVQX5CWYeurUKY0fP16zZs3yfDDVLn2z9IwhjGoJ8VO7vpUJoxaQ1NQU\nzZs3zVD38/PTY489qU6dejj8/pTtypUrWrlyqRYunGX4/vLZZ0vVsePDio2tfK0WGBioJUv+fPw/\ndy5RI0f2M+zbrduj6tbtUUPdrJ+dO7dq8eK5pv01anSzRo/+p6pWrW56vGXLO/Tww/20f/8eTZ78\nb8XHH89x3G63a9Kkl1SvXkOVL1/RdI/r+fmZvSAlXfPnv3PtVvahoWU1aNBTateuvfz8/AzrJSkx\n8ZQmThyvPXt2mh5bvHiOnnhiZK79FBS73a5du7Yb6tWq1WRCagEglAoAAICiqFu3blq4cKESE81f\nrCZJy5cvV+/evVW1alUvdgYYGZ+tBwAAAAAAAIoRs0BqYmKili5dKkkKCwvT66+/ru7duzsN+wQE\nBKh///5q37696fFvvvkmzz3NnDlTSUlJhnqDBg00YcIEh2HUbD4+Prr77rv1xhtvXJvk+tdefvnF\nOGHOzMCBAxUbG2uov/vuu7p48WKu5//666/67DPjRL9GjRqpa9eupudERUVde4uIMJ/eZrFYcqzL\nfgsL8+xUudLgxx9/NK23bNnSI/vHxsaqWrVqeb4u8ub6YKoj2cHUjh07avXq1e5f1C59vfTMtWBV\nNkuIn+7tX0Whkc4DkXDd9u0/XAtJXu/JJ/+h7t0fzTWMKknBwcHq2XOAXnllmmG91WrVihUfGM4p\nV678tbfwcOP3E+mPaTvXr8t+CwvLeUvIq1evatq010z3uP32ezRx4hyHYdTr3XhjE02d+r5q1qxt\nOJaamqL33jNO5DZjFuhOTDyl9es/l/TH9NDJk9/V/fc/6DCMKknR0bF6/fUZat36LtPjq1Z9pOTk\n3L9fFpSNG7/WxYvGFx00bXprIXRTOmSHUgOCcn7eHNh2SV8vPSM5ftgGAAAACkSZMmU0aNAgp2uy\nsrI0Z84cL3UEOEYgFQAAAAAAACXOxYsXlZGRIV9fX40bN061axtDL4707t1bgYGBhvrhw4eVlZVl\nckZOBw8e1HfffWeoR0VFady4cQoJCclzL9WrVzedLipJixaZ3y75rywWi8aMGWMI7l66dCnXJ6lt\nNpumTp1q+HMHBwfr6aefNg0Dw/sOHDhgqIWHh5sGkV3VoEEDQ+33339XcnKyx65RWuU3mLpq1SrX\nLuQgjBoQRBjVG7Zt+8FQq1gxRn//e+d873XTTc318MPGSafbtm10qbe8WrdutU6eTDDUa9asrWee\n+bfDib9mgoND9NJLb5p+v/3mmzVKTDyV6x5m34OsVuu1r6X//d+XVb36DXnqx9fXV88885IqVowx\nHEtPT9e33641OavgpaWlaf58Y0DXx8dHHTo8VAgdlR6hkWV0bz9CqQAAACg6OnTooMqVKztds2bN\nGsXHx3upI8AczxgDAAAAAACgxOrcuXO+bykeHh6uJk2aGOoZGRn6/fffcz1/zZo1pvVhw4apbNmy\n+epFkpo2bao2bdoY6nv37tWxY8fytEeDBg300EPG4MqGDRu0Y8cOh+etXLlShw8fNtQHDx6s6Ojo\nPF0bBevq1as6cuSIoZ7fz/vcmAVSpT8C2PAMHx8fp6FU6Y9g6ksvvZT/ianOwqj9CKN6w9mzpw21\nBg0au7xf+/bdVLlyNTVteqv+/vfO6tdvqPr2HZKnF064auXKpab1/v2HmwZLcxMdHasHHjAGcm02\nm9auXZHv/a7XsuUdatYsf1Oig4ND1LPnANNjGzeud6sfV9jtdk2Z8rJ+/934y+S2bR/I0zRauCes\nPKFUAAAAFB1+fn4aOnSo0zV2u13Tp+ftrhNAQSGQCgAAAAAAgBLJz89PXbp0cencunXrmtYTExOd\nnpeSkqKNG40T6qpWrapWrVq51IskPfjgg6Z1s0msjvTq1ct0Uuz06dOVnp5uqJ85c0YLFy401G+7\n7Ta1a9cuz9dFwTp69KiuXr1qqDsKkLqqXr16pnWz6axwXV6mpUo5J6Y6C5X/sZnzMGpYecKo3nDh\nQpKh5uvr+DbyuSlXroLmzVumV1+drtGjX1SvXo/r7rv/7vTW9O44fvyojh0zht9r1Killi1vd3nf\nzp0fMa1v3Pi1y3tKUteuvV06r23bB+Tv72+oHzjwi1JTU9zqKT+sVqumTHlZGzZ8aTgWFVVeQ4eO\n9Vovpd2fodScv1IllAoAAIDC8MADD6hGjRpO16xfv16//vqrlzoCjAikAgAAAAAAoERq3ry5oqKi\nXDq3UqVKpvXU1FSn523btk0ZGRmG+gMPPOBSH9kaNmyoihUrGuo//vhjnvfw9/fXmDFjFBAQkKPu\nKHj6zjvvGIKqUVFRGj58eJ6viYJ3/Phx0/oNN+TtNtV5VbVqVdMJiI6uD/fkJ5g6ZMgQDR482DyY\n6jCM6ksY1cvMgqLHjxsDnkXVjz9uMq23bHmHW/tWqlRFlStXNdTj44/r3LkzLu1ZvnxFNWnS1KVz\ng4ND1LDhzYZ6VlaWjhzxzkTopKTzeuGFJ7V27WeGY4GBgXrxxdcVFhbulV7wh7DyZdSuL6FUAAAA\nFA15eW6OKakoTARSAQAAAAAAUCI1atTI5XPDwsJM61euXHF63qFDh0zrN910k8u9ZGvc2Hhr5+PH\njyslJe8T26pVq6b+/fsb6itXrszR+8aNG03DrqNGjVJ4OCGYouT0aeNtwCUpJibGo9fx8fExDUXn\nNjUY7slrMHXnzp2mwVRHYdR2fQmjeltMjPGFDseOHdGmTd8WQjf5t3fvLtN6ixa3ub333/52q2l9\n//49Lu53y7WvHVfceGMT0/qRI3Eu75lXO3Zs0bBhj2jXLuP34ODgEL388ttq2ND9/1Mg/8IrBDgP\npQIAAABe0rZtW9WpU8fpmu+++04HD3rnRXXAXxnvOwIAAAAAAACUAGa3p8+rv04RzWZ2a/TrmQVS\ng4KCVL16dZd7ydagQQN9/bXxFsZHjx7NV+D1wQcf1LZt27R79+5rNZvNpqlTp2rKlClKT0/XrFmz\nDOf9z//8j5o3b+5a8ygwjgKhFSpU8Pi1oqOjFR8f7/T6cXFxunr1qjIyMpSVlSWbzSar1SqbzebW\n+3a7XVar9dqeWVlZLr9vs9nk5+d37c3X19fhx76+vqa37/a264OpzoJ2O3fu1M6dO1WrVi21bTxC\n1vOxOY5nh1HDK5g/xqHg3HRTc23fbpwy+tprL2jkyOd1770dCqGrvDt61DyMWatWPbf3rlGjlmn9\nt9+OSmqX7/3q13f9BSmSVL26+YTpU6cS3NrXGavVqvffn6GPPnrf9HilSlU0fvxkh73BO7JDqevm\nJ+hqhu1a/cC2S/Lz99Fd3T3/vRcAAAAw8+STT2rkyJFO17zzzjuaOnWqlzoC/lT4z6QBAAAAAAAA\nBSAyMtLlcx0F0JxNKbRarTp27JihXqFCBfn6un+jotjYWNN6QkJCvgKpPj4+euqppzR8+HClpqZe\nqx87dkzLly/XqVOndOHChRyHEcenAAAgAElEQVTnVK5cWY8//rhrjaNAmQVSy5Ur5zBU7Q6zCakZ\nGRm6ePGiIiIiJEm9e/f2+HXxp7wGUyvoTkMY1T/AV/c8WpkwaiG55572WrhwttLT03LUMzMzNXHi\neK1e/Yk6dOiuVq3uVGho2ULq0lx6errOnjU+1kRFlVdQUJDb+8fEVDat//57vGk9N1Wr1nSnHUVH\nG6fZSlJi4im39nXk/PmzeuWVfzicQtu69V0aO3a8QkJCC+T6yJ/wCgG6p09lrV/wu6yZf4ZS925K\nlo+kOwmlAgAAwAtat26thg0bat++fQ7XbN68Wb/88ovpXZeAguT+M+EAAAAAAABAERQSEuLV66Wk\npJhOUHUnGHs9R7dgd3TLdmcqVKigoUOHGuqLFy/Wl19+maPm5+enMWPGyGKx5Ps6KHh/DQ9LfwRS\nC0L58uXz3AMKlrMwatMaPVS/0n2G+j2PVlZEdGBBtgUnIiOjNHz4sw6PHzy4VxMnjlePHvfq2WeH\n6KOP3tfhwwdls9kcnuMt586Z3468UqUqHtk/JsY8AJqUdM6l/SpWNP9+mVeRkeaPoZcuXXRrXzNH\njx7SiBF9TMOo/v7+GjJkjMaNm0gYtYiJjAnU3b2Nn7e/bErW1i/OF0JHAAAAKI1GjRqV65rp06d7\noRMgJyakAgAAAAAAoEQqiAmRzlw/bfR6u3fvVvv27QvsusnJyS6d17ZtW23dulU//PDDtZpZoLZn\nz56qV8/9WzKjYKSnpxtqBRUeDgw0DzOa9YDCczTxB9WJvkdBAWE56vs2X1CbbjFykmVFAbvvvo46\neTJeH3wwz+Eaq9Wq3bt3aPfuHZLeVmhoWf3tb7eoWbNWuuWW21SunPenLyYnm4fOQ0PDTOv5FRxs\nHrZ0dN3cREREudOOw/BnSsplt/b9qxMnjunZZweb7hsbW1nPP/+a6tZt4NFrwjPsNmn/FmNA2RLi\np3rNPPN1AQAAAOSmadOmuuWWW7R9+3aHa3bs2KEdO3aoefPmXuwMpR0TUgEAAAAAAAAPSElJKXbX\nHT58uKKiHAd36tWrpx49eri8PwpeRkaGoeYoOOouR0FXsx5QOOx2u5LTfteXv/xb6Vcv5TiWcDBF\nWz8z3nYd3tW//zCNHTs+z8HxlJTL2rjxa02Z8rJ69fq7Ro3qrxUrPtSlS669GMEV6elppnVPhd8d\nP7bkP+zu5+enoKAgN/sxPz8z03OPdVeuXNG//jXaNIx6880t9PbbCwmjFmFbViYq4WDO/39ZQnzV\ndURlRUaXKaSuAAAAUBoNGzYs1zXTpk3zQifAnwikAgAAAAAAAB6QlmYe2CloZlNN8yosLEwPP/yw\nw+M9e/aUn5+fy/uj4HkzkMqE1KLLbrdLknz+O/704pUErdn9ktIyc4ZSj++9rM0rEvXf5Sgk997b\nQTNmfKh27drL3z9/N7I7eHCvZsyYqEcf/R/Nnj1FqakF/2KIq1czTeuOgpv5FRhoHkjNzDS/rjNl\nyrgfBnT0b2K1Wt3eO9v777+jU6d+N9SbNr1V//d/b6lsWaZsFkV2u7R5RaJ+25szSGwJ8VO3J6sq\nKsa70/kBAACARo0aqU2bNk7X7N27V1u3bvVSRwCBVAAAAAAAAKBYcycgk5aWpuXLlzs8vmDBArcC\nryhYjv5tAgIKJhDjKOjF50jh+WsQ9XrJab9r7R5jKPW3vZe15TNCqYWtUqUqeuaZl7Ro0RcaNOgp\n1a/fKF/nZ2Rk6NNPF+mJJ7pp9+4dBdRlNuPnl/Tn55+7HO1j9nmdGx8f93/t5agfX1/P/Ert/Plz\n+vzzTw31ihVj9OKLrxfYYzjcY7dLWz5zFEatwmRUAAAAFJohQ4bkumbmzJle6AT4Q/5eegsAAAAA\nAADAlKOwXqNGjdS5c+cCu25YmOtT1ObMmaPERMe38D527JgWLlyoxx57zOVroOCUKVNGPj4+hvCU\nK1MF88LbAVg4Zrfb5ePjk2tgLzntd3219//0cJtJyrhiu1bPDlS16hQtFzJ/8KDIyCh169Zb3br1\n1vnz57Rjx2bt3LlFP/+8XZcuJed6flLSeT3//Aj97/++rDvuaFcgPTr6/paR4ZnpyI72ceWxJTPT\nODU6v7Kyskzr+Z1m68jXX39u+ng6dOhYhYSEeuQa8CzCqAAAACjK6tevr9tvv10bN250uCZ7SmrL\nli292BlKKwKpAAAAAAAAgAeEhISY1suWLatWrVp5uZvc/fjjj/ryyy9zXbds2TLdcsstatQof9P7\n4B0BAQHKyMgZwPrrx57iaN/AwMBr79eqVUsBAQEKCgqSj4+P/Pz85OvrKz8/v0J539/fX76+vob3\nrVarbDabsrKyrr2ZfZy97o033iiQv9P8ymsQVZKioqIUGxursLAwdR1RRcumJRBKLeLKlSuv++9/\nUPff/6BsNpuOHDmon37app07t2jv3l2y2Wym51mtVk2aNF7Vq9+g6tVv8HhfwcHm39/S0tI8sn96\nuvk+FktQvvfKysqS1Wp1KzzqqJ+goGCX97zezp3GW2XGxlZW69Z3eWR/eBZhVAAAABQHgwcPdhpI\nlf6YkkogFd5AIBUAAAAAAADwgIiICNN6amqqlzvJXXJyst566y1D/a677tLZs2e1b9++azW73a5J\nkyZp+vTpCg72TBgHnhMYGOi1QGp6uvkUQ4vFcu39pUuXFsi1C1tRCKRmh1Fz06FDBw0aNEiVKlXK\nUSeUWrz4+vqqbt0bVbfujerZc4CSky9q3brVWr58ic6dO2NYn56errlz39L//Z/xsd1d4eGRpvXL\nl3Of4JoXKSmXTeuRkeVc2u/KlVSFhYW73E9qaoppvWxZ1yeSX+/YscOGWrNmRe+FKyCMCgAAgOKj\nfv36uvPOO/Xdd985XMOUVHiLb2E3AAAAAAAAAJQE4eHhOSZFZrtw4UIhdOPc9OnTDX1FRERo8ODB\nGjlypOE2yWfOnNHMmTO92SLy6PowaDZHwVF35WVCKjzPbrdLUq5h1A4dOmjlypUaP368IYwqSeVi\nA9R1RBUFBuf8tcBvey9ry2eJ+u9lUESFh0eoe/dH9e67y9ShQ3fTNdu3b1JCwgmPX7tChWj5+hp/\nnXTyZLxH9ne0T/nyFV3aLzHxlDvtKCnpnGnd1YDs9axWq5KTLxrqsbFV3N4bnkUYFQAAAMXN8OHD\nc13D83vwBgKpAAAAAAAAgAf4+PioShVjoOT3338vsICgK77++mtt2rTJUB86dKjCwsJUpUoV9erV\ny/S8zZs3e6NF5ENkpHFy4fnz5wvkWufOOQppmU9PhHs8FUS9HqHU4s9isejJJ5/Tffd1ND2+Y4fn\nH6fLlCmjmBjj59bFixccThPNj5MnE0zrVavWcHE/94KyZ86YB1pjYiq7ta8k+fv768svdxjeund/\n1O294TmEUQEAAFAc3XDDDbrrrrucrtm7d6+2bNnipY5QWhFIBQAAAAAAADykTp06hprNZtNvv/1W\nCN0YnT17VrNmzTLU27RpozZt2lz7uGvXrqpdu7Zh3bRp04rkxNfSLCYmxlA7f/68rl696vFrnTlj\nvE14YGCgIiIiPH6t0qwggqjXI5RaMvTvP9z0cyQ+/niBXK9u3RtN63Fx+9ze++jRONN6rVr1XNrv\nt9+OutOOw79DVwOyKGYchFEDg30JowIAAKDIGzZsWK5rzJ4bBDyJQCoAAAAAAADgIY0bNzatm00k\n9Ta73a4pU6YoNTU1Rz0sLExDhw7NUfPz89Po0aPl7++fo56cnKy33nqrwHtF3kVHR5vWzcKj7kpM\nTDTUKlZ07ZbaMMpLEDU0NFQDBw50KYh6PUKpxV+5cuVVuXI1Q/3SJePt4D2hceOmpnV3J7La7Xbt\n3GmczuPn56cGDZq4tOfOnVvd6ungwb2m9dq167u1L4oBu7R19RnTMGrXEYRRAQAAUPTdcMMNuvvu\nu52uYUoqChqBVAAAAAAAAMBDmjdvbghxStLGjRuVlZXl1t4//vijhg8froULFyouLu5aeC2vVq1a\npV27dhnqgwYNMp1wWbNmTT300EOmfXzxxRf5ujYKjtmEVMk8POoOu91uGnJ1dH3kXX6CqKtWrdLg\nwYNdDqJeL7dQqgilelxS0nlt375Ja9as8Mh+ZcoYw3HBwSEe2fuvbr31dtP6li3fyWazubzv/v17\nlJxsDNE2adJMQUFBLu0ZF7dPFy4kuXRuenq69u792VAPCwtX9eo3uLQnion/hlGP7b6Uo5wdRi0X\nG1BIjQEAAAD5M2TIkFzXMCUVBYlAKgAAAAAAAOAhoaGhatGihaF+5swZrVmzxq29P/nkEx0/flwf\nfvihnn76afXt21cfffRRns6Nj4/X/PnzDfUWLVqobdu2Ds/r0aOHqlUzTuCbO3euTp48mffmTbgb\n0MUfqlevblo/etS9W1b/VUJCgjIyMvJ8feTOlSBq2bJlPdqDs1Dq1tVnCKV6QHLyRf3zn6P1yCMP\n6JFH7tc//zlKU6a8rFOnfndrX5vNprNnjcHzqKjy+d4rL4/HFSpEq0kT45TUkycTtHHj1/m+ZraP\nP15gWm/b9gGX97Tb7Vq+fIlL527a9I3pY12zZq3k68uv1EoswqgAAAAoQW644Qa1a9fO6RqmpKIg\n8dMzAAAAAAAA4EFdunQxrS9atEhnz551ac9Vq1Zp796ctxBOSkrKUzjNarVq8uTJhoBNSEiIRowY\n4fTcMmXKaPTo0YbAXEZGhiZOnJinEJOfn59pPTk5OddzkbtatWopIMAYlDl48KBHrxMXF2dab9Cg\ngUevUxoUhSDq9RyFUo/tvkQo1QPCwyP0229HlZR0Lkd93ry33dp3164flZJy2VCvU8fx16TZBG9J\nunjxQp6u2aVLL9P6ggUzlZaWlqc9rrd37y5t2fKdoR4REam77ro/3/tdb+XKj3TunHGqszNXr17V\nhx++Z3rM3X5QhBFGBQAAQAk0aNCgXNcwJRUFhUAqAAAAAAAA4EENGzY0nZJ6+fJlvfjii7p40Xhr\nYme++eYbzZ4921CPiopyOt0029KlS3Xo0CFD/fHHH1f58rlP0qtXr546depkqMfFxeVpQmtwcLBp\n3VHAEflTpkwZ1a5d21D3dCD1wIEDpnUCqXlX1IKo1yOUWrDMwozff79eixfPdWm/y5cv6Z13Jhjq\nQUHBataslcPzgoNDTOtxcXtN63/VqtWdqlevoaGekPCbJkz4l2w2W572kf6YrPrvf481Pdar1xMK\nDAzM815m0tKuaNy4p/IVlJ0xY6JOnDhmqMfGVlaLFq3d6ifb5s0bdP/9zQ1vo0b198j+yCfCqAAA\nACihbrjhBt17771O1zAlFQWFQCoAAAAAAADgYUOHDlVoaKihnpCQoCeffFIbN27MdY+LFy9q6tSp\nmjRpkmnIZ9iwYbJYLE73OHz4sJYuXWqo/+1vf9P99+d92lufPn0UGxtrqH/44Yc6fPiw03ODg4MV\nHh5uqB87dixPfw/InVko9OLFizp16pTHrmEWcK1cubLpvy1yKspB1OsRSi043bv3UUiI8XvCggUz\n9c9/jtLhw3kPkP/00zY99dRjio8/bjjWqVMPp0HO4OAQhYdHGOq//npY33+/Ptdr+/j4aOTI500n\nrW7a9K3+93+HKDEx98edb75Zo9Gj+ys52fgCjfr1G6lDh+657uFITEwlNWnSVJJ05EicRo3qp4MH\nnQdu09PTNWXKy/r8809Nj/fuPdDhtG8UY4RRAQAAUMINHDjQ6XMRkjRt2jQvdYPSxPz+LAAAAAAA\nAABcFh0drbFjx+rll1+W1WrNcSwpKUmvvfaa3n//fbVq1Uo1a9ZUZGSk/P39lZqaqoSEBO3fv187\nd+40nJutY8eOatXK8RQ8ScrIyNCkSZOUlZWVo26xWPTkk0/m689jsVg0cuRI/eMf/8hRt1qtmjRp\nkqZMmeI0HFunTh3t2LHDUH/99de1fv161alTRz4+PkpKSlJ8fLx69uyppk2b5qvH0qx58+b69FNj\nkGrbtm3q3Lmz2/snJibq+HFj+K158+Zu712S2e12+fj45BpEfeSRR9SrV69CCaH+VXYoddm0BGVc\n+TMInx3YatmhouT8d1kwERYWriFDxmjSpJcMx7Zv36Tt2zepatUaaty4qapWraGoqPKyWIIk2ZWW\nlqbz588qIeG4fvppm8PAZ5Uq1dWr1xO59lKvXkNt377JUH/llX9o3bpVqlOngXx8fHT+/DnFxx9T\nr15PqFmzltfW1a5dT8OGPaOpU1817LFnz0967LEuat68tVq1ulPR0bEKD4/UlSupungxSQcO/KLN\nm7/VyZMJpr1FRZXXCy+85lb4MzMzQwMHPqWnnhogq9Wq3377VaNHD1DDhjepdeu2qlq1hiIjy8lm\ny9L582e1e/cOfffdV7pwIcl0v5tuaq527dq73A+KKMKoAAAAKAWyp6R+9dVXDtfExcVp69atatmy\npcM1QH4RSAUAAAAAAAAKQIsWLfTss89q0qRJysjIMBw/deqUli1blu9977nnHg0ePDjXdfPnz1d8\nfLyhPmDAAEVHR+f7uk2aNNEDDzygtWvX5qjHx8frvffe09ChQx2e27ZtW9NAqt1u144dOwzHzP6+\n4FijRo0UGRmpCxcu5Khv3rzZI4HUTZuM4TVJuv32293euyTKSxA1JiZGvXr1UseOHYtEEPV62aHU\nT6cmKDOdUKqn3HdfR508Ga8PPphnejw+/rjp1NO8qFKlul59dXqebnPftu3fTQOpdrv9Wjj2ehkZ\n6Ya17dt3U2pqit59923DMavVqq1bv9fWrd/n408gVawYo1demaaKFWPydZ7Z9evWbaCBA0drxoyJ\nkv74s+3du0t79+7K114xMZX03HP/yXWiEIofwqgAAAAoLYYMGeI0kCpJs2fPJpAKj/LNfQkAAAAA\nAAAAV9x222164403VK1aNbf3CgwM1NChQ/X000/nGo7Zs2ePVq5caag3atRI7du7PuntscceU/ny\n5Q311atX66effnJ43u233646deq4fF045+vrq9atWxvq+/fvN4RUXbF582ZDrUKFCqpfv77be5dE\nuQVRx40bp9WrVxeZqahmysUGqMvwygqw5PwVwrHdl7R19RnJXkiNFXP9+w/T2LHjnU6Uzq/bb79H\nkybNzXOQ884771Xduje6fd2HH+6nceMmKjw8wu29Wra8Q9OmLVLVqjXc3stm+yNE3blzTw0ZMsbl\naas1atTSG2/MUlRUObd7QtHy45qzhFEBAABQalSrVk3t2rVzumbPnj2mLyQHXEUgFQAAAAAAAChA\ntWvX1ttvv61hw4apUqVK+T4/KChIHTt21Ny5c9WhQ4dc16empurNN9801AMDAzVy5Ei3Jr2FhIRo\nxIgRpsfefPNNXb582fSYn5+fXnzxRdWo4X7YCObuuusuQ81ut2vjxo1u7ZuYmKgDBw4Y6rfffjtT\nA//Lbs89nXl9ELVjx45e6Mp9FaoEEkotAPfe20Hz56/Uww/3U9myYS7t4efnpxYtWuv112foxRdf\nV0REZL7OHTduomrWrO3Sta/XuvVdmjPnE/Xo0V8hIaH5Pr9Jk6b6z3/e1ksvTfZIsFXK+fXYpcsj\nevPNeWrU6OY8nx8YGKiHH+6nt956X9HRsR7pCUXHj2vO6sjO5Bw1wqgAAAAo6QYOHJjrmrlz53qh\nE5QWPva8PFsGAAAAAAAAr0lMTCzsFlCA4uLi9NNPP+nQoUM6deqUkpKSlJ6eLh8fHwUFBSkkJESV\nKlVSjRo11LhxY918880KCCgZIYmrV6/qq6++0qZNm3Ts2DGlpqYqICBAZcuWVVhYmGrWrKnatWur\nTZs2iojwTDipNBk9erQOHz6coxYbG6s5c+a4HB6dM2eOVqxYkaPm5+enOXPmKDo62rDerFYSNG/e\nXNIfYTcfH59robfc/l5jYmI0ePDgYhNCNXM2IUPLp/+uzHRbjnrNm8LUskNFiVyyy7KysnTgwC/a\nvXuHTpw4poSE35SUdE4ZGelKT0+Tj4+PQkJCFRQUrIoVY3TDDXVVu3Z9tWhxW75CqGauXr2qL7/8\nTBs3fq1jxw4rJeWyAgICVbZsmMLCIlSrVl3VqdNAbdrco8jIqFz3y8zM1M6dW7Rnz04dOXJQp079\nrsuXk5WRkSF/f38FB4eoQoVoVa1aUw0aNNatt96umJj8v0jjeuPHj9GWLd/lqIWEhGrZsg2GtYcP\nH9SWLRt04MAvio8/fq23wECLypUrrxo1aqtp01t15533uRwURtFGGBUAAACl2dixY7Vhg/Fnpeu9\n++67uummm7zUEUoyAqkAAAAAAABFDIFUAK74/vvv9frrrxvq48aN0y233JLv/dLS0tSvXz+lpqbm\nqN9111165plnTM8p6YHUvCoJQdTrEUpFUZSfQCpKN8KoAAAAKO2OHj2qHj16OF3TsmVLTZs2zUsd\noSTzzX0JAAAAAAAAAKCou+2220wDoX+dcJpX69atM4RRJalLly4u7VcaxMTEaNy4cVq9enWJCaNK\nUoUqgeoyvLICLDl/pXBs9yVtXX2mkLoCgNwRRgUAAACkWrVqqU2bNk7XbN26VQcPHvRSRyjJCKQC\nAAAAAAAAQAng5+enXr16Geq7d+/Wnj178rVXenq6Pv74Y0O9VatWql27tss9llQlNYh6PWeh1B/X\nnC2krgDAMcKoAAAAwJ+GDBmS65qZM2d6oROUdARSAQD/z96dh1VZ5/8ffx12BBUUEVxyydKve4qG\nmUkqrqigmFY6mmU5ljNXWd9pna/za2yaaXHqqinLyhq3BEURd00094y0zMQFTU1UcGVX4Pz+mME8\nsQic+3AWno/r8rric3/u9+dtB/F436/zuQEAAAAAgIvo37+/7rzzzlLjc+fOVXFxcRlnlC0uLk4X\nL160GPPy8tJjjz1mdY+u5I477nD5IOrNygulHv32CqFUAA6FMCoAAABgqV27durVq1eFc7Zt28Yu\nqbAagVQAAAAAAAAAcBEmk6nMHS+OHTumTZs2VapGRkaGEhISSo2PGjVKISEhVvfojPbu3Vvmr0WL\nFtWKIOrNCKUCcHSEUQEAAICyVeaDxnPnzq2BTuDKCKQCAAAAAAAAgAtp27atBg0aVGr8888/19Wr\nV295/ty5c1VQUGAxFhwcrDFjxhjWI5wboVQAjurb9ZmEUQEAAIBydOnSRT169KhwTnJyso4dO1ZD\nHcEVEUgFAAAAAAAAABczZcoUhYaGWoxdunRJ77//foXnbd68Wdu2bbMYc3Nz07PPPisfHx/D+4Tz\nIpQKwNF8uz5Th/dcthgjjAoAAABYKuvJOr/18ccf10AncFUEUgEAAAAAAADAxfj6+uq5556Th4eH\nxfi2bduUnJxc5jkZGRn64IMPSo2PGzdOHTp0sEmfcG6EUgE4CsKoAAAAQOV06dJF3bp1q3DOxo0b\ndfLkyRrqCK7G49ZTAAAAAAAAUJOGDRtm7xZuMJvNMplM9m7Dwssvv6xevXrZuw3YQHR0tK5fv27v\nNm5w9u//tm3bavz48Zo3b57F+L/+9S+1b99ewcHBN8aKi4v19ttvKycnx2Juhw4dNG7cOOsbh8sq\nCaUmvP+LruUX3xgveWR2jyGN7NUagFqirDCqlw9hVAAAAKA8jz32mKZNm1bhnI8++kh//etfa6gj\nuBJ2SAUAAAAAAAAAFxUbG6u+fftajOXk5OjVV19Vfn7+jbHPPvtM33//vcW84OBgvfDCC3J3d6+R\nXuG8SkKpnl6WAW52SgVga+WFUWOebEoYFQAAAChHz5491blz5wrnrFu3TmfOnKmhjuBK2CEVAAAA\nAAAATsXd3b3UY8hLFBcXKzc3V9nZ2crNzVVxcXGZ84zm6empOnXqqE6dOvL19ZWbG58Dh21U9P1f\nnmeffVYXLlzQgQMHboylpaXp7bff1iuvvKL169dr2bJlFuf4+fnpr3/9qxo1YndLVE6jZt6KntZU\ny//1i65fM98YZ6dUALZSURi1UTNvO3UFAAAAOIcpU6Zo+vTp5R43m8365JNP9Morr9RgV3AFBFIB\nAAAAAADgVOrWrauGDRve+PrSpUvatGmTkpOTtXfvXhUWFtq8Bz8/P/Xo0UPh4eG69957FRISYvM1\nAan0939l/fOf/9SkSZN0+vTpG2Pbt2/Xu+++q/Xr11vM9fDw0BtvvKFu3bpZ3S9ql8YtfAilAqgR\nhFEBAAAA6/Tq1Uvt2rXToUOHyp2TlJSkqVOn8oFlVInJbDabbz0NAAAAAAAANSUrK8veLdyQnZ0t\nHx+fKu/IaEu+vr46deqUkpOTtWXLFotdH23FZDKpffv2Cg8PV69evdSpUyceY24D2dnZcqTLlY76\n/e9I/QBlOfdzfqlQqiS16V6fUCoAqxFGBQAAAIyxdetWPfPMMxXOGTt2rJ577rka6giugEAqAAAA\nAAAAHJ7ZbNb3339/I4R68uRJm68ZHBx8I4AaHh6uunXr2nxNAHAV5YVS7+wZoO4Dg+zUFQBnt/+r\nCzq445LFGGFUAAAAoHrMZrPGjRunY8eOlTvHw8NDa9asUWBgYA12BmdGIBUAAAAAAAAO6fr169q9\ne7eSk5O1detWXbx40abreXt7q1u3bjdCqK1bt7bpegDg6gilAjASYVQAAADAeOvWrdNLL71U4Zzf\n/e53+sMf/lBDHcHZEUgFAAAAAACAw8jOztbWrVuVnJysnTt3Ki8vz6brtWnTRuHh4QoPD1f37t3l\n6elp0/UAoLYhlArACIRRAQAAANsoLi7WyJEjlZ6eXu6cOnXqKCkpSfXq1avBzuCsCKQCAAAAAADA\nrjIzM7Vx40Zt2bJFKSkpKioqstlaAQEBNwKovXv35lFTAFADCKUCsAZhVAAAAMC2VqxYoVdffbXC\nOVOmTNETTzxh+NphYWHau3ev4XVhPwRSAQAAAAAAUOMyMjK0bt06bdiwQT/++KNN12rRooUiIiLU\nt29fderUSSaTyabrAWGmgwUAACAASURBVABKI5QKoDoIowIAAAC2V1hYqKioKGVmZpY7p27dukpK\nSpKfn58ha4aFhd34bwKproVAKgAAAAAAAGrExYsXtX79em3YsEH79++36VodO3ZURESEIiIi1LJl\nS5uuBQCoHEKpAKqCMCoAAABQcxYvXqw333yzwjnTp0/XxIkTrVrn5iDqzQilug4CqQAAAAAAALCZ\nK1euaMOGDdqwYYNSUlJkq0tRnp6e6tGjh/r27at+/fopMDDQJusAAKxDKBVAZRBGBQAAAGpWfn6+\noqKidPny5XLnBAQEaM2aNfL09Kxy/fKCqCUIpLoOAqkAAAAAAAAwVHZ2tjZu3KgNGzbom2++UXFx\nsU3W8ff3V+/evRUREaF7771Xvr6+NlkHAGAsQqkAKnJg60X9sPWixRhhVAAAAMD25s2bp/fee6/C\nOc8++6zGjRtXqXrlhVDNZrNMJpPFWLdu3fTRRx9VrlE4NAKpAAAAAAAAsFpubq6++uorbdiwQbt3\n71ZhYaFN1gkODtZ9992niIgIhYWFycPDwybrAABsi1AqgLIc3H5J+zdfsBgjjAoAAADUjJycHEVF\nRSkrK6vcOUFBQUpKSqrwumxVgqglCKS6Dq7YAwAAAAAAoFry8/OVnJysDRs2aMeOHbp+/bpN1rn9\n9tvVt29fRUREqH379jZZAwBQsxq38FH0tKalQqmH9/zn0YCEUoHahzAqAAAAYF9+fn4aO3as5s6d\nW+6czMxMJSUlKTo6utSxWwVRywujwrWwQyoAAAAAAAAqraCgQF9//bU2bNigbdu2qaCgwPA1TCaT\nunTpooiICPXv31+hoaGGrwEAcAznfs5Xwvu/qPA6O6UCtRlhVAAAAMAxXL16VUOGDKnwum9oaKhW\nrFghNzc3SeUHUauCHVJdBzukAgAAAAAAoELXr1/X9u3btWHDBm3dulV5eXmGr+Ht7a2ePXsqIiJC\nERERql+/vuFrAAAcT+MWPho5talWfGgZSj2857I8PEzq0q+hHbsDUBMIowIAAACOo169ehozZozm\nz59f7pz09HStX79eL7/8cg12BmfBDqkAAAAAAAAopbCwULt27dL69eu1ZcsW5eTkGL6Gl5eX7rnn\nHkVGRqpv377y8fExfA0AgHNIT8svFUqVpPb3BBJKBVwYYVQAAADA8WRmZmrw4MFVOsdsNstkMlV7\nTXZIdR3skAoAAAAAAABJUlFRkb755hutX79emzdvVlZWluFreHp6qlevXoqMjFRERIR8fX0NXwMA\n4HxCW5e9U+rBHZckiVAq4IIIowIAAACOKSgoSKNHj9bSpUtvObckiGpNGBWuhUAqAAAAAABALbdv\n3z6tXbtW69ats0kIVZLuueceDRw4UBEREfL397fJGgAA50YoFag9ygqjenqZCKMCAAAADmLixIla\nvny5ioqKyjxOEBXlIZAKAAAAAABQC506dUpJSUlas2aNzpw5Y3h9d3d39ejRQwMHDlS/fv0IoQIA\nKoVQKuD6UvdcLjOMGj2NMCoAAADgKJo0aVIqjFoSQpVEEBXlIpAKAAAAAABQS1y8eFFr1qzRmjVr\ndOjQIcPru7m5KSws7EYItV69eoavAQBwfYRSAdeVuueyUtZnWoyVhFEbt/CxU1cAAAAAbhYWFmbx\nNbuhoioIpAIAAAAAALiwvLw8bdq0SWvWrNE333yj4uJiQ+ubTCZ1795dkZGRGjBggOrXr29ofQBA\n7UQoFXA9hFEBAAAAx1ZTQdSbd1qF6yGQCgAAAAAA4GKKi4u1Z88erVq1Sps3b1Z+fr6h9U0mk7p2\n7arIyEgNHDhQAQEBhtYHAEAilAq4EsKoAAAAgGP6bQi1BKFRVBeBVAAAAAAAABdx6tQprVixQqtW\nrVJGRobh9bt06XIjhNqgQQPD6wMA8FuEUgHnRxgVAAAAcDy3CqLWdBi1bt26NboebIdAKgAAAAAA\ngBO7evWq1q5dq6SkJB08eNDw+h07dlRkZKQGDRqkoKAgw+sDAHArhFIB50UYFQAAAHAsjhZELXHn\nnXfaZV0Yj0AqAAAAAACAE9q6datWrlypzZs3G167Q4cO6t+/vwYOHKiQkBDD6wMAUFUVhVLdPEzq\ndB87dwOOpqwwqsmtSCHd0tW4xe126goAAAConcoLopawVxAVrodAKgAAAAAAgJNIS0tTYmKi1qxZ\nowsXLhhau2nTphoyZIiGDRum5s2bG1obAAAjlBdKPbD1otzdTWrfO9CO3QG4WXk7o2766U2lbflO\n/45rqcmTJ2vw4MFyc3OzU5cAAACA67tVEBUwmslsNptvPQ0AAAAAAAD2kJWVpbVr12rlypU6ePCg\nobXr16+vyMhIDRkyRF26dDG0NgAAtpKelq/lH/yiokLL2xtd7m9IKBVwAEe+vaK9azIsxjy9TPK/\n8yfN/mCmxXizZs30yCOPaNiwYfLwYB8dAAAAwChlBVHNZrND7IRaVh9TpkzRE088YaeOYCQCqQAA\nAAAAAA6mqKhIu3fvVmJiorZs2aLr168bVtvb21v33XefhgwZonvuuYcb/wAAp3T6SJ5WfnSGUCrg\nYMoLow5/IkSTp41WZmZmmeeFhIRo0qRJio6O5v0pAAAAYKXfhlEdJYhagkCqayOQCgAAAAAA4CBO\nnz6tFStWKCkpSRkZGbc+oQruuusuDRs2TAMHDlSdOnUMrQ0AgD0QSgUcS3lh1OhpTbVr3zq9+uqr\nt6zRqFEjTZw4UTExMfL29rZVqwAAAIDLKyuUKskhgqkEUl0bgVQAAAAAAAA7ys/P18aNG5WYmKiU\nlBRDazdr1kxRUVGKiopSSEiIobUBAHAEhFIBx1BRGLVRcy+NGDFCZ8+erXS9hg0basKECYqNjZWP\nj4/R7QIAAAAu77eBVEdCINW1EUgFAAAAAACwgwMHDigxMVHr1q1TTk6OYXX9/f01cOBADRs2TF26\ndDGsLgAAjopQKmBfFYVRG7fw0bp16/TSSy9Vq3ZAQIAefvhhPfDAA/Lz8zOiXQAAAKDWcNRQKoFU\n1+Zh7wYAAAAAAABqiytXrigpKUmJiYk6duyYYXXd3d3Vq1cvRUVFqW/fvvL09DSsNgAAjq7ZHb4a\n/niTUqHU/ZsvSBKhVMCGbhVGlaTjx49Xu/7ly5f1/vvva968eRo/frwefPBB+fv7W9UzAAAAUFt0\n69atwqdylRUMBazFDqkAAAAAAAA2ZDabtXv3bi1fvlzJyckqLCw0rPbtt9+u4cOHa+jQoWrQoIFh\ndQEAcEbslArUrMqEUUucOnVKH330kdatW6fi4uJqr+nn56cHHnhA48ePV/369atdBwAAAKgt5syZ\no48//rjMY/YKpLJDqmsjkAoAAAAAAGADmZmZWr58uVasWKH09HTD6tatW1eDBg3SiBEj1L59e8Pq\nAgDgCgilAjWjKmHUm/3yyy/65JNPtHr1aqs+qOXj46PY2FhNnDhRgYH82QYAAAAqkpycrJkzZyo7\nO7vM446wUyqBVNdBIBUAAAAAAMAgRUVF+vrrr7V8+XLt2LHDqt2fbubm5qbw8HANHz5cERER8vT0\nNKQuAACuiFAqYFtp+69q98rzFmOVCaPe7Ny5c/r000+VmJio69evV7sXb29vxcTEaNKkSQoKCqp2\nHQAAAMDVpaamaubMmTpy5Ii9W2GHVBdHIBUAAAAAAMBK6enpWrp0qZKSkpSZmWlY3RYtWmj48OGK\nioriBjsAAFVQXii128Agte0ZYKeuAOdnRBj1ZpmZmZo3b54SEhJUUFBQ7b48PT01cuRIPfLII2rc\nuHG16wAAAACuLCsrS2+99ZaSkpLKPF4SI7T1bqkEUl0bgVQAAAAAAIBquH79ujZt2qTly5dr7969\nhtX19fVVZGSkRowYoa5duxpWFwCA2oZQKmAso8OoN7t06ZI+//xzxcfHKz8/v9p1PDw8NGzYME2e\nPFlNmza1qicAAADAVS1cuFBvv/223dYvK5D64YcfKiwszE4dwUgEUgEAAAAAAKrg1KlTiouL06pV\nq3TlyhXD6nbq1EkjR47UwIEDVadOHcPqAgBQmxFKBYxRVhjVw9OkmCetD6Pe7MqVK5o/f76WLFmi\nnJycatdxc3PT4MGDNWXKFDVv3tyw/gAAAABXkZqaqieeeELZ2dllHi8rNGoUAqmujUAqAAAAAADA\nLVy/fl0bN27UsmXL9N133xlWNyAgQMOGDVNMTIxatmxpWF0AAPArQqmAdcoLo46c2lShrY0Lo94s\nOztbCxYs0OLFi5WVlVXtOiaTSQMGDNCUKVPUunVrAzsEAAAAnF9WVpZmzJihlJSUGl2XQKprI5AK\nAAAAAABQDlvshmoymdSrVy+NHDlSffv2lYeHhyF1AQBA+U4fyVPinF9UXGQ5TigVqJg9wqg3y8nJ\n0ZdffqmFCxfq8uXLVtWKiIjQ1KlT1aZNG4O6AwAAAFzDm2++qcWLF5d5zBY7pRJIdW0EUgEAAAAA\nAG5iq91QQ0JCNHLkSI0cOVLBwcGG1QUAAJXz80+5WvXJGUKpQCXZO4x6s/z8fMXFxenf//63Ll68\naFWte++9V48//rjat29vUHcAAACA81u5cqXeeustZWdn23wtAqmujUAqAAAAAACAbLMbqoeHh/r2\n7avo6GiFh4cb/klyAABQNYRSgcpxpDDqzQoKCpSQkKDPP/9cGRkZVtW6++67NXXqVHXq1Mmg7gAA\nAADnlpqaqpkzZ+rIkSM2XYdAqmsjkAoAAAAAAGqtwsJCbdq0SUuXLlVKSophdVu0aKHo6GgNHz5c\nAQGEWwAAcCSEUoGKnTiQpZ3Lz1mMOUIY9bfi4+P1ySefWB1M7dq1qyZPnqx77rnHoM4AAAAA55WV\nlaWZM2dqy5YtZR4viRpas/kCgVTXRiAVAAAAAADUOunp6YqLi1NiYqIuX75sSE1vb2/1799fMTEx\nuuuuuwypCQAAbINQKlC2EweytHPFOemmu4eOGEYtUVhYqFWrVumzzz7T6dOnrarVoUMHPfroo7rv\nvvsM6g4AAABwXgsXLtTbb79d5rGyAqVVQSDVtRFIBQAAAAAAtUJRUZG2bt2qpUuXateuXYbVbdOm\njaKjoxUVFSV/f3/D6gIAANsilApYcrYw6s2Ki4u1du1affrppzpx4oRVtdq0aaNHH31U/fv3l5ub\nm0EdAgAAAM5n7969evbZZ5WdnV3m8eoGUwmkujYCqQAAAAAAwKWdP39ey5Yt0/Lly5WZmWlITR8f\nHw0YMECjRo1S586dDakJAABqHqFU4D+cOYx6s+LiYm3atEmffPKJjh49alWt2267TZMnT9bgwYPl\n4eFhUIcAAACAczlz5oxmzJihI0eOGFaTQKprI5AKAAAAAABcjtls1vbt27V06VJt375dxcXFhtS9\n4447FBMTo2HDhsnPz8+QmgAAwL7KC6WGDWmkO7rXt09TQA1ylTDqb23evFmffPKJDh06ZFWdkJAQ\nTZo0SSNGjJCXl5dB3QEAAADOZebMmUpKSirzWEn8sLK7pRJIdW0EUgEAAAAAgMu4fPmyli1bpmXL\nluns2bOG1PTx8dGgQYMUExOjjh07GlITAAA4FkKpqK1cNYx6s23btmnu3Lk6cOCAVXWCgoI0fvx4\nxcbGysfHNf7fAAAAAFWxcuVKvfXWW8rOzja8NoFU10EgFQAAAAAAOL09e/Zo2bJlSk5OVmFhoSE1\n27Ztq5iYGA0dOlR16tQxpCYAAHBchFJR29SGMOrNdu3apblz52rfvn1W1alfv74efPBBjRs3Tv7+\n/gZ1BwAAADiH1NRUzZgxw7ANIUoQSHUdBFIBAAAAAIBTysrK0ooVK7Rs2TKdPHnSkJo+Pj6KjIzU\n6NGj2Q0VAIBaiFAqaovaFka92d69ezVv3jzt2rXLqjq+vr4aM2aMJkyYoMDAQIO6AwAAABxfVlaW\nZs6cqS1btpQ7x2w2y2QyVbpmYmKimjRpYkR7sDMCqQAAAAAAwKns27dPS5cu1aZNm3Tt2jVDarZq\n1UqjR4/W8OHD5efnZ0hNAADgnAilwtWdOpStbUvP1sow6s0OHjyouXPnauvWrVbV8fLyUnR0tCZO\nnKjGjRsb1B0AAADg+ObMmaOPP/64zGNVDaTu3bvXqLZgZwRSAQAAAACAw8vNzVVSUpKWLVumo0eP\nGlLTw8ND/fv316hRo9S9e3dDagIAANdAKBWu6tShbG1felbmWh5GvVlaWprmzp2rDRs2yJrbpu7u\n7hoyZIgeffRRNW/e3MAOAQAAAMeVnJysmTNnKjs7u8zjlQ2mEkh1HQRSAQAAAACAw0pLS9PixYu1\nevVq5efnG1KzadOmiomJUUxMjOrXJ1ACAADK9vNPuUqae0bmYstxQqlwVoRRK3bq1Cl99tlnWr16\ntQoLC6tdx2QyqX///nrsscfUpk0bAzsEAAAAHNOZM2c0Y8YMHTlypNo1CKS6DgKpAAAAAADAoRQW\nFmrTpk2Ki4vTvn37DKnp7u6uPn36aPTo0QoPD6/So4IAAEDtdfxAjlZ/lk4oFU6PMGrlnTt3TvPm\nzdOKFSt07do1q2r16tVLjzzyiLp162ZQdwAAAIBjysrK0ltvvaWkpKQyj5dEFMu7Nk8g1XUQSAUA\nAAAAAA4hIyND8fHxSkhI0MWLFw2p2bBhQ8XExGj06NFq1KiRITUBAEDtQigVzo4wavVcuHBB8+fP\nV3x8vPLy8qyq1alTJ02ePFl9+vQxqDsAAADAMa1cuVJ/+ctfqnwegVTXQSAVAAAAAADY1Z49exQX\nF6ctW7aouLj41idUQteuXTVmzBj1799fHh4ehtQEAAC1F6FUOCvCqNbLysrSwoULtXjxYmVlZVlV\n6/bbb9ekSZM0cOBAubu7G9QhAAAA4FhSU1M1Y8YMnT17ttLnfPPNNzzZzEUQSAUAAAAAADUuOztb\nSUlJio+P14kTJwyp6evrq6FDh2rs2LFq3bq1ITUBAABKEEqFsyGMaqy8vDzFxcVp/vz5Vj/RoUmT\nJvrd736n4cOHy9vb26AOAQAAAMeRlZWlGTNmKCUlpVLz33zzTUVERNi4K9QEuwVSi4vIwQIwhps7\nn5AAAAAAnEVaWpoWL16s1atXKz8/35CaLVu2VGxsrIYPHy4/Pz9DagIAAJSlvFDq3cOD1bpLPfs0\nBZShrDCqu4dJ0b8njGqtgoICJSYm6vPPP6/Sjk9ladCggR566CHFxsbK39/foA4BAAAAYxiR75s9\ne7aWLFlyy3lt27bVvHnzrF4Pv7JXnspugdT3nj5qj2UBuKCnZrexdwsAANR66cfzdeZYnq5euK6s\ny4XKulSo7MvXdb2AD6IBtuLuaZKvn7t8/d3lH+ChoCbe8g/wUGgrHzUI8bJ3exYKCwu1adMmxcXF\nad++fYbUdHd3V9++fTVmzBj16NHDkJoAAACVQSgVju6Xwzn6Oi69VBh1+ONN1OwOX/s15mIKCwu1\ndu1affbZZ/r555+tquXn56fY2FiNHz9egYGBBnUIAAAAWId8n3OzV56KQCoAp0cgFQAA+9iXfFkn\nDuYo/US+iq4TPAUcSb2Gnup8b339z9315O3rZrc+MjIytGTJEiUkJOjy5cuG1GzQoIFGjRql0aNH\nq1GjRobUBAAAqCpCqXBUvxzO0dfxlt+bhFFtq7i4WF999ZU+/fRTHT582Kpanp6eioqK0sSJE9Ws\nWTODOgQAAACqh3yfcyOQCgDVRCAVAICadXR/tnYkZurqxUJ7twKgEu66P0B3D2koD8+aezTLnj17\ntGTJEm3dulXFxcW3PqESwsLCFBsbq4iICHl4eBhSEwAAwBqEUuFoCKPa3/bt2/XZZ59Z/WQIk8mk\nfv36acqUKWrThnsgAAAAsA/yfc6NQGrN3RcD4Ox+81OLQCoAADUj88w1bYk/r/Tj+fZuBUAV1Q30\n0P1jg3Vb2zo2WyM7O1tJSUmKi4uz+nGVJfz9/RUVFaXY2Fi1bNnSkJoAAABGIpQKR0EY1bH88MMP\n+uSTT7Rt2zara/Xo0UMTJ05UeHi4AZ0BAAAAlUe+z8k4SJ7KYQKpD75MoAxA5Sz6q+XPDwKpAADY\n3sHdV/XV4vPlHg8I9lKTO/wU0qqOfPzc5eXjJm9fd7l58C9TwFaKC83KyylSQW6Rsi5c09njeUrb\nf7XCc3oNa6juAwIN7SMtLU2LFi3SmjVrlJ9vTGC9Xbt2GjNmjAYNGiQfHx9DagIAANgKoVTYG2FU\nx3X06FHNmzdP69evt/rpEW3bttXEiRPVv39/ubu7G9QhAAAAUD7yfc7FUfJUPOMOAAAAQIW+3XhJ\nO1ddKPPYHWH19T+9AuVXn39aADXNzcMkv/oe8qvvoQah3mrRsa7uGtBQx3/I0rHvrupKxrVS5+xc\ndUGF1826e0gDq9YuLCzUxo0bFR8fb/WjKEt4e3tr4MCBio2NVYcOHQypCQAAUBNadfTT0EdCS4VS\nd6/8z4f6CKXClgijOrY2bdror3/9q37/+9/riy++UGJioq5fv16tWqmpqXrxxRfVpEkTjR8/XiNG\njOADfAAAAAAcDneNAQAAAJRr56oL+nbjpVLjjVv5KmxQsOoFedqhKwDl8fJ1V9ueAWrbM0CZp/O1\nK/Gcsi5a3uz8Zv1FFReb1WtYwyrXz8jIUFxcnJYvX66LFy8a0nOLFi00evRoDR8+XHXr1jWkJgAA\nQE0jlAp7IIzqPJo2baoXXnhBjz/+uBYsWKD4+Hjl5uZWq9aZM2f0j3/8Q3PmzNHYsWM1btw41avH\nzxgAAAAAjoFAKgAAAIAyHf42q1QY1eQmdYsM0p09AuzUFYDKCmrmo6GP36Y9azJ0fP9Vi2Pfbryk\nBo291DascgHQ3bt3Ky4uTlu3brX6MZOS5O7urr59+2rMmDHq0aOH1fUAAAAcwY1Q6qfpMpt/HSeU\nClsgjOqcGjZsqD/84Q+aPHmy4uLitGjRomp/2O/KlSv66KOP9MUXX2jEiBGaMGGCQkNDDe4YAAAA\nAKqGQCoAAACAUs6eyNfGhecsxjx93NR3bBM1as7j4ABn4eZhUvjwYDVpU0e7E8+p8PqvyYhNi86p\nXkNPhbYq+890dna2kpKSFBcXp59//tmQfoKDgxUTE6OYmBgFBQUZUhMAAMCRtOrop0ETQ7Tu87OE\nUmEzhFGdn7+/vx555BE9/PDDSkxM1Pz583X69Olq1crPz9eSJUsUHx+vAQMGaPLkyWrTpo3BHQMA\nAABA5RBIBQAAAGDh6oXrWvnxGd28CaKnj5sGP9pc/oGe9msMQLXd9j/+CmzsrXWfntL1/P/84S4u\nllZ9ckYPPHOb6jX49fLA0aNH9eWXX2rNmjXKz883ZP3w8HDFxsaqT58+cnd3N6QmAACAo2rTxV8i\nlAobST+WSxjVhXh5eSk2NlajRo3Spk2bNG/ePKWmplarVnFxsdavX6/169crLCxMEyZMUO/evQ3u\nGACq572nj9q7BaDSnprNBzsAwBoEUgEAAABY2LDgnApyf72z5eYmRYxrQhgVcHJ1G3gqYlwTbfz8\n9I1gRH5OsTYvOa9hjwVr48aNiouL0/79+w1Zr379+ho+fLhiY2PVrFkzQ2oCAAA4i4pCqW7uJrXs\nWNd+zcFppR/L1dYlZwijuiA3NzdFRkYqMjJSu3bt0rx587R3795q19u7d6/27t2rVq1aafz48Ro6\ndKg8PbmuAwAAAMD2CKQCAAAAuOFUaq7Sj1vuiBg+orGCmpX9SG8AziWomY96DAvWnqTzN8ZOpeZq\n/OjpOvrLN4as0bFjR8XGxioqKsqQegAAAM6qvFDqzhXnJIlQKqqkJIxaXPTrGGFU1xQeHq7w8HAd\nOnRIn332mb766iuZb/4hUgXHjx/Xq6++qvfff19jx47VmDFjVK8euzQDAAAAsB03ezcAAAAAwHFs\nW5Fp8XWTNnXUgpukgEu5vWs9hbauYzHWttFIq2r6+PgoJiZGixcv1rx58wijAgAA/FebLv4aNDHE\nctAs7Vx+Tse/z7JPU3A6hFFrp3bt2unvf/+7EhISNGrUKHl5eVW71sWLF/XBBx9o6NChev3113X6\n9GkDOwUAAACAX7FDKgAAAABJ0tF92bqQfu3XAZPUbWAj+zUEwGbuigxS+pyTN75uVLeNbmvYQycv\nVG2X1NatW2v06NGKioqSn5+f0W0CAAC4hDZd/DV4UumdUnetPCeTGzulomLnTuQRRq3lmjVrphdf\nfFHTpk3TwoULFRcXp6ys6gXa8/PzFR8fr6VLl+q+++7Tww8/rG7duhncMQDc2rgX29i7BeCGxa8d\ntXcLAOBSCKQCAAAAkCQd2HnF4utWneqqbgNPO3UDwJbqN/JSiw519fOPv97EvDOkf6UCqR4eHurX\nr59iY2O5cQkAAFBJbbr4SxN/E0o1SztXnJNEKBVlO3ciT8mLLMOokhQ1hTBqbRQQEKBp06Zp8uTJ\nSkhI0IIFC3T27Nlq1TKbzdqyZYu2bNmidu3aafz48RowYIA8PLh1DKBmmHiWLwAALou/5gEAAACo\nqNCsM8fyLcbu7BFgp24A1IQ7e9S3+Do0oKPc3coPoYeEhOjJJ5/U6tWr9dprrxFGBQAAqKI2Xfw1\naGKITKabBv8bSj1xoHq7HcJ1/RpG/XVbXXcPk6KnNVXzOwmj1mY+Pj568MEHtWLFCr366qu64447\nrKp36NAhvfzyyxo+fLjmzZun7OxsgzoFAAAAUBsRSAUAAACgX47lWdzk8vZ1U4NQbzt2BMDWgpr6\nyMv318sC7m4eCq7XzmKOyWRS7969NXv2bCUmJuqRRx5RgwYNarpVAAAAl0EoFZVRXhh1+OPsjIpf\nubu7a8iQIVq0aJHee+89hYeHW1UvIyND7733ngYPHqx//OMfOn36tEGdAgAAAKhNeO4CAAAAAJ08\nlGvxdbN2/nbqBECNMUnN7vRX2v6rN4ZuC7pL6Zd/UEBAgKKjozV69GiFhobasUkAAADX06aLv8zj\nQ7Tu3zc9atss+q6RsgAAIABJREFU7Vx+TjJLLTvVtV9zsLtzx/OUvJgwKqomPDxc4eHhSktL0+ef\nf65169apsLCwWrXy8/O1ZMkSxcXFqW/fvho/fry6du1qcMcAAAAAXBWBVAAAAAC6kH7N4usGTXzs\n1AmAmtSgibfS9v/6dee2vTV80p0aPHiw/ZoCAACoBe7o5i+Te4jWfX5W5l9zh9qZeE4ySS07Ekqt\njc6dKB1GdXMXYVRUWuvWrfWXv/xF06dP16JFi7R06VJlZ2dXq5bZbFZycrKSk5PVsWNHPfzww+rX\nr5/c3d0N7hoAAACAK3G79RQAAAAAri4vu8jia796fHYNqA3q1LX8sx5QL5gwKgAAQA1p08VfgyaG\nyGS6adAs7VxxTicOZNmtL9jHuRN5Sl5UOow67FHCqKi6oKAgTZ8+XatXr9YzzzyjkJAQq+odOHBA\nL7zwgkaOHKkFCxYoNzf31icBAAAAqJUIpAIAAAAoFUitQyAVqBXq1Pe0+Do/p6icmQAAALCFklCq\nygilnjpUvV0N4XwqCqO2+J86duwMzq5OnTp66KGHtGLFCv3tb39Tx44drap39uxZzZ49W4MHD9Yb\nb7yhkydPGtQpAAAAAFdBIBUAAACA8rIKLb72D/QsZyYAV/Lb8HkegVQAAIAa16aLvyIfblwqlLp9\n6VlCqbUAYVTUBHd3d0VGRmrevHn69NNP1b9/f7m5Vf82cW5urr788kuNGjVKTz31lLZt2yaz2Xzr\nEwEAAAC4PLY9AgAAAKDiYsuv3T1MZU8E4FK8fS1vQBZe4wYiAACAPbTtXleStGHBOem/b8nM/w2l\n9h4doubt/O3YHWyFMCrsoXPnzurcubPS09O1aNEirVixQjk5OdWut2vXLu3atUtNmzbVmDFjFB0d\nLX9/fmYBAAAAtRU7pAIAAAAAAAAAANhZ2+51S+2UamanVJdVVhjV5EYYFTUnNDRUzzzzjFatWqWn\nn35aoaGhVtX75Zdf9M9//lODBw/WrFmzlJaWZlCnAAAAAJwJgVQAAAAAAAAAAAAHQCi1digvjDr0\nkVDCqKhx/v7+evjhh7VixQq98cYb6t69u1X18vPzlZCQoAceeECPP/64vvrqKxUVFRnULQAAAABH\n52HvBgAAAAAAAAAAAPAfbbvXlSRtWHBO+m9esSSU2nt0iJq341HYzqyiMGqrjn527Ay1nZubm+6/\n/37df//9SktL08KFC7VmzRoVFBRUu2ZKSopSUlLUqFEjjRo1SjExMQoKCjKwawAAAACOhh1SAQAA\nAAAAAAAAHAg7pbomwqhwFq1bt9bLL7+stWvXavr06QoJCbGqXkZGhubMmaNhw4bpueee0549ewzq\nFAAAAICjIZAKAAAAAAAAAADgYAiluhbCqHBGdevW1cSJE5WUlKR//OMf6t69u1X1ioqKtHnzZk2b\nNk3R0dGaP3++srKyDOoWAAAAgCMgkAoAAAAAAAAAAOCACKW6hjLDqCbCqHAu/fr105w5cxQfH6/R\no0fLx8fHqnqnT5/WP//5Tw0aNEgzZ87UgQMHDOoUAAAAgD0RSAUAAAAAAAAAAHBQhFKdW3lh1EET\nQwijwim1bNlSL7zwgtauXatnnnlGzZo1s6retWvXlJSUpEmTJunhhx9WQkKC8vPzDeoWAAAAQE0j\nkAoAAAAAAAAAAODACKU6p4rCqG26+NuxM8B6/v7+euihh5SQkKB33nlHvXv3trpmamqqZs2apUGD\nBun111/X0aNHDegUAAAAQE0ikAoAAAAAAAAAAODgKgql/nI4x36NoUyEUVFbmEwm9e7dW++8846W\nL1+uhx56SP7+1n2P5+TkKD4+XuPGjdOECRO0bNky5ebmGtQxAAAAAFvysHcDAADXcP78eXu3AMBJ\nBQcH27sFAAAAAACcQtvudSVJGxack/6bczSbpa/j09UnNlRN7+QR8I6AMCpqq2bNmumZZ57RtGnT\ntGrVKi1ZskTHjh2zquZPP/2kn376SbNnz9agQYMUExOjDh06GNQxAAAAAKMRSAUAGMJsNt96EgAA\nAAAAAACr3Ailzj93Y8xcTCjVUZQVRhVhVNQyPj4+Gj16tEaPHq3vvvtO8fHx2rRpkwoLC6tdMy8v\nT8uXL9fy5ct1xx13aNSoURo6dKj8/PiZBwAAADgSN3s3AAAAAAAAAAAAgMpr272u+o2zfOJISSj1\nl8M5duoK5YVRIx9uTBgVtdZdd92lWbNmae3atXrqqacUGhpqdc0jR47o73//uwYNGqSZM2fq+++/\nN6BTAAAAAEYgkAoAAAAAAAAAAOBk2t9dj1CqA6kojFqyqy1QmwUEBGjSpElKTEzUO++8oz59+shk\nMllVMz8/X0lJSZo8ebJiY2P1xRdf6OLFiwZ1DAAAAKA6CKQCAAAAAAAAAAA4IUKpjoEwKlB5JpNJ\nvXv31uzZs7Vy5UpNnjxZDRs2tLruiRMn9O6772rIkCF6+umnlZycrMLCQgM6BgAAAFAVBFIBAAAA\nAAAAAACcFKFU+yKMClRfSEiIpk2bplWrVun1119XWFiY1TWLior09ddf69lnn9XgwYP19ttvKy0t\nzYBuAQAAAFQGgVQAAAAAAAAAAAAnRijVPsoMo4owKlBVHh4eGjBggD788EMlJCRowoQJCgwMtLru\n5cuXtXDhQj3wwAOaMGGC4uPjlZ2dbUDHAAAAAMpDIBUAAAAAAAAAAMDJEUqtWeWFUfuNCyaMClih\nefPm+uMf/6g1a9bo9ddfV3h4uCF1f/rpJ73++uuKjIzU888/r61bt6qwsNCQ2gAAAAB+5WHvBgAA\nAAAAAAAAAGC99nfXkyR9tfj8jbGSUGqf2FA1vdPPXq25lMxT+eWGUUteAwDWKdk1dcCAATp79qwS\nEhKUmJiojIwMq+pev35dGzdu1MaNGxUQEKCBAwdq2LBh6tChg0GdAwAAALUbgVQAAAAAAAAAAAAX\nQSjVtjJP5eurBb8QRgVqUEhIiH7/+9/r8ccf144dO7Rs2TJt375dxcXFZc5fsGBBldc4evSovLy8\n5O3tLTc3HjLqSho1amTvFgAAAGoVAqn/9eKLT+nbb3dZjAUGNtDixevt1BFsaebMGdq5c4vFmJ+f\nv5YtS6YfADXilVdeUUpKisVYQEBAtS6UAbZy5coVzZgxQ+np6Rbj/fr1K/VIKw8PD/3lL39R165d\na7pNuCjenwMAAABA9VUUSu07tolCb69jr9acWkkYtaiQMCpgD+7u7urTp4/69OmjzMxMrVixQsuX\nLy91/TIgIMCqdcoLugIAAAC4NT7eBQAAgFKuXbumWbNmlbqYe8899+iZZ57RU089ZTFeWFio1157\nTSdPnqzJNgEAAAAAQDna311P/cYFW4yZi6WtS84o/ViunbpyXoRRAccSFBSkRx99VImJifrwww81\ndOhQ+fj42LstAAAAoNZjh1QAAACU8s477+jHH3+0GLv99ts1Y8YMmUwmRUZG6uTJk1q2bNmN4zk5\nOfq///s/zZ492+pdCJxZWFhYqbHQ0FA98cQTioqKskNHAAAAAIDaqqydUouL/hNKve8BdkqtLMKo\ngOMymUwKCwtTWFiY/vSnP2nDhg32bgkAAACo1dghFQAAABbi4uKUnJxsMebn56eXX37ZYpeBRx55\nRJ07d7aYd/78eb322msqKiqqkV6dRXp6umbOnKnhw4crKSnJ3u0AAAAAAGqRsnZKLQmlslPqrZUX\nRu0b24gwKuBg/Pz8FB0dbe82AAAAgFqNQKrBvvpqjQYNCrvx69//nmPvlgAALmzz5s0aNmzYjV8L\nFiywd0twcqmpqZo/f36p8WnTpik42PLmlZubm55++mn5+flZjP/4449avHixTft0ViXB1KioKIKp\nNYT3586F1wsAAACwDUKp1VNRGLVT7/p26goAAAAAAMflYe8GHMXo0eMVETHIYszLy7vKdVJTf7z1\nJABArRcTE6O+fftajHl5eVW5zuHDh41qCVBeXp7eeOMNFRYWWozfe++9ioiIKPOc4OBgTZ06VW+9\n9ZbF+OLFi3XXXXepffv2NuvXmZ09e1YzZ87UnDlz9MQTTygqKsreLTkc3p/XTrxeAAAAgO20v7ue\nigrN2hKfcWOsJJR63wNNFHp7HTt253gIowIAAAAAUHUEUv+re/dwQ+ocPnzQkDoAANfWrVs3Q+oc\nOXLEkDqAJH388cdKT0+3GAsMDNSTTz5Z4Xn9+vXTrl27tH379htjxcXFeuONN/TBBx/Ix8fHJv06\nOrP5PzesTCZTuXNKdkz98MMPNXXqVIKpN+H9ee3E6wUAAADYVkmQklBqxQijAgAAAABQPW72bsCV\nFBUV6dixVHu3AQCoJYqKipSWlmbvNuAiUlNTtW7dulLjv/vd71SvXr1bnv/YY4+V2uX3/PnzWrJk\niWE9OqOSMGpJOLU8JTumDh8+XElJSTXRWq3A+3PnwusFAAAA1IxOveurb2wji7GSUGr6sVw7deU4\nCKMCAAAAAFB9BFINdOLEMRUUFNi7DQBALfHzzz/z9w4MYTabNWfOnFLjrVq10oABAypVIzg4WNHR\n0aXGExISdPbsWat7dHaVDaaW7JhKMNUYvD93LrxeAAAAQM0hlFq28sKo90YHEUYFAAAAAKASCKQa\niMdLAgBq0pEjR+zdAlzEpk2blJpaelfCKVOmyM2t8m8XH3jgAQUEBFiMXbt2TXPnzrW6R1dBMLVm\n8f7cufB6AQAAADWLUKqlisKoXfsGlHMWAAAAKmPz5nUaNCis1K9vvtlh79YAAAbzsHcDriQ19Ud7\ntwAAqEUOHz5s7xbgAoqKirRw4cJS4507d1aXLl2qVMvX11exsbGlAqg7d+7U0aNH1aZNG6t6dSU3\nB1NL/rssJcHUlStXasqUKQoLC6upFl0C78+dC68XAAAAUPNKdv3cEp9xY6wklHrfA00Uensde7VW\nowijAoDtpaWl6ejRozpx4oROnDihixcvKj8/X7m5ucrPz5e7u7t8fHzk7e0tf39/hYaGKjQ0VC1a\ntFDXrl3VsGFDe/8WAAAAUAkEUg105IhtdvQxm806ePB7paTsVmrqAZ05c1qXLl1QQUG+3Nzc5Otb\nR0FBwWrWrIXat++iu+/uoyZNmtmkl9/2tX37Zn311RodPnxQV65ckslkUnBwqF566XW1alW50ElG\nxjnt3v21jh5N1YkTR3XhQoZyc3OUl5crT09P+fvXU9269dSyZRu1a9dRd93VUy1atLbx7+5XaWlH\ntGNHsg4e3K9Tp04oK+uqCgry5eXlrQYNGqp581bq3Lm7IiIGKigouMb6qixH/f4BYD1b7ZBqNpv1\n008/6bvvvtPhw4eVnp6uS5cuqaCg4L8/N3zVsGFDNW3aVO3bt1fPnj0VGhpqk15+29eOHTuUnJys\nI0eO6MqVK//9eydYzz//vFq2bGnzHlzR9u3bde7cuVLjI0eOrFa9gQMHasGCBcrLy7MYT0hI0HPP\nPVetmq6sssHUb7/9Vt9++626d+9OMLUKeH/uXO/PbfV6Xbt2TSkpu/X999/q6NFDOn8+XZcvX7rx\nevn4+KpBgyCFhDTVnXf+j7p06aGOHbtWaYfo6qjo9Zo7N96mawMAAAA3qyiUGvFgUzVu6Wuv1moE\nYVTANaWkpOiVV14p89jMmTPVo0cPm/fw7rvvat26daXGGzZsqA8++EB+fn7lnvv888/rhx9+sGV7\nt9SnTx89//zzVtX45ZdftHHjRn399ddKT0+vcG5RUZGuXbsmScrIyNDx48ctjt92220aMGCABg8e\nXOH/O1dX1rVhrhsDAABHQiD1v1588Sl9++0ui7HAwAZavHh9mfMLCgo0YkTvW9adP/9jzZ//canx\nzp276Y03Pqrw3MLCQq1Zk6D4+H/r7NkzZc4pKirS9etXdPXqFaWlHdHWrRv14YdvqWPHrnrwwUcV\nFtbrlj2W5U9/+r327fvGYiwqKlbTp//nHx05Odn6f//vuVJzJOnUqRO6evXyLdfYs2e7Fi/+VD/+\nuL/cOUVFRcrPz1dm5nkdP35UmzevlSR16RKm2NgJ6tnz1q9BdR0/flQffPCm9u/fW+bx/Pw8nTlz\nWmfOnNbu3V/rk0/eVf/+QzV58nQ1aGD/T+jZ8/sHwK298sorSklJsRgLCAjQggULypxfUFCgUaNG\n3bLuwoULy9ztslOnTnr99dcrPLewsFBr167VsmXLygwoSiU/N67r6tWrOn78uLZt26aPPvpIHTp0\n0NixY9W9e/db9liWF198Ufv3W/59MHToUD355JOSpJycHM2aNavUHEk6deqUrl69Wq11IS1btqzU\nWGhoqHr27Fmten5+foqMjFRiYqLF+Ndff62JEycqONjxPrzhCAimlsb7c0uu9v68Jl6vixcvKD7+\n31q7drlycrLLnFNcXKzs7CxlZ2fp5Mnj2rNnm+bP/1gNGgRp5MixGjlynHx9q37z3drXCwAAAKhp\n5YVSkxedUcSDTVw2lEoYFXBd3bp108CBA7V+felrSf/617/0r3/9q1r/5q+sH374ocwwqiRNnz7d\n5QOVV69e1cKFC7V69WoVFRUZUvPkyZP69NNPtXjxYj300EOKjo6u8FpqbVKbrhsDAADHZ9stX1Bt\nR44c0rRpD+m99/5e7s3uihw4sE8vvTRds2Y9X+7N14p4eXmXGisoyJf0n6DEq6/+b5k3Tyvj6tUr\neuml6XrllT9WeLO7Ivv379Urr/xR77zzmgoKCqpV47fc3d1v/PeGDUl66qnx5YZRy1JcXKwNG5I0\nbdqDOnjwe0N6qi57f/8AcD5Hjx7V9OnT9cEHH5QbRq3Ijz/+qD//+c/629/+ppycnCqf7+XlVWqs\n5JPQZrNZr732WplhVFjnxx9/LHOn3aioKKt2BhwxYkSpsaKiIq1cubLaNWuLyl5A/fbbbzV16lQ9\n8cQT2ru38u9XUH32fn9VG9+fW2PDhiQ99thoLV06v1r/vy9ezNRnn72vKVNilZKyu8rn2/L1AgAA\nAGylU+/66hvbyGKsuMis5EVndO5EXjlnOa/ywqi9hjUkjAq4iMcee6zMx7yfP39eX3zxhc3WvXbt\nmt57770yj/Xv379Gdme1p/3792vq1KlauXKlYWHUm+Xm5mru3LmaOXNmqSd11XYl140ff/xxrhsD\nAAC7IZDqgHbsSNaMGY/q55/TrK61detG/fGPk5SZeb5K5/n4+JQay8vLlSStXbtC3323p1r9nD9/\nVk8/PVl79+6s1vm/tXr1Mv3f/z2twsJCq2uVBFK3bNmgN9+cWe2aly5d1IsvPqUjRw5Z3VN1OML3\nDwDnsnPnTv3v//6vTp48aXWtbdu2acaMGcrMzKzSed7epYM7JReS1q9fr3379lndG0rbsmVLqTGT\nyaT77rvPqrqhoaFq27ZtqfFt27bJbDaXcQaqi2BqzXCE91e18f15dX300T/15pszDflgVUbGOb30\n0nStWbO8SufZ6vUCAAAAbK22hFIrCqN2HxBop64AGM3Pz0/Tp08v89jKlSuVmppqk3W//PJLnT59\nutR4YGCgpkyZYpM1HcU333yjP//5z7py5UqF8xo3bqzu3btr8ODBiomJ0bhx4zRq1CgNHTpU4eHh\nat68+S0/vL9371797W9/s+t1KEeVkpLCdWMAAGA3HvZuAJZSUnZr1qzny33j3LlzN/XqFaHbbmul\nwMCGunatQJcuXdDBg99r166tZT7e8dSpE3rxxac0e/an8vPzr1Qfnp6ld6orKMhXYWGhFiwo/cjM\nyigsLNRrr72g06d/LvN4QECg7r67j1q1ukOBgQ3l61tH+fl5unTpgg4dOqDdu79Wbm7pXfe++26P\nPvpotqZNe65afZXw9PRSevovmj37VYtxHx8f9ex5r1q0uF0NGgTJZDLpwoUMHTy4X999t0fFxcWl\nauXl5WrWrD/pww+/LPNmtK04yvcPAOfx3Xff6fXXXy/350anTp1uXPwJDAzUtWvXdOnSJf3000/a\ns2ePTp06VeqcU6dO6ZVXXtGbb75Z6ccOlbVDakFBgQoLC7Vo0aKq/aZQKcXFxdqxY0ep8fbt26tB\ngwZW17/nnntKXdA9f/68UlNT1a5dO6vrwxKPZLIdR3l/VRvfn1fHF198qKVL55d5zN3dXZ06dVOv\nXn0VGtpMDRoEqbi4SJcuXdDJk8e1Y0eyfvrph1LnFRcX6513Zqlevfrq3fv+SvVhi9cLAAAAqCmd\neteXJG2Jz7gxVhJKjXiwiRq3tN0jrmsCYVSgdunRo4fuv/9+bd682WLcbDbrnXfe0bvvvisPD+Nu\nmf/888+Kj48v89iTTz6punXrWlU/MDBQnp6eVtWorPr161dp/qlTpyq839CqVStFRUWpZ8+elboG\nffXqVaWkpGjlypX/n737jo+qyv8//p70XigJhBYEErpID11BsYAKVlxWbEsT0Z+i4nf9rlgXZbEA\ngu4qCLKWVVGxoIsi0hGiSO+hhUgIKaTX+f3BF3S4d1JmJplJ8no+Hjwgn3vvuSeZy8zNve97jvbu\nNR8IKDExUQsXLtT48eOr1Nf64vx14+7du2v8+PFcNwYAADWCQKqD/P399d5731z4Oi3tlKZOHWdY\n76abxuqmm8Ya6ma/KJw9m6VZs54yPUmPjW2jBx54Qp07dzPtT79+Q3TvvQ9o1aoVmj9/lnJysm2W\nHz16WK+//pIee+yZCr83yTwYVFCQr3XrVun06d+ncm7XroOGD79eLVteorCwcBUWFujUqRTFxLQw\nbL9s2b9Nb/D6+Pjo3nun6vrrby33F77c3BwtWvS6vvjiI8Oy5cv/o2uvHa3Y2DaV+v7M+PsH6K23\nXrswcpGPj4/+/OcJuvHGMXZDpampv2n27KdNp9tMSUnWhx8u0rhxkxzuU1V40vEDwPX8/f317rvv\nXvj69OnTevjhhw3rjR49WqNGjTLUzd5fz549q5dfftn0faNVq1a6//771alTJ9P+JCQk6O6779YP\nP/ygN998Uzk5tqPQHTt2TG+88YYeeeSRCr83yfxzsaCgQBs2bNDp07/f/GjXrp2GDRumli1bKiws\nTIWFhUpNTVXTpk0rtR/8bufOncrIyDDUExISXNJ+//79tWjRIkN97dq1BFKrUX0OpnJ+fk5tOT+v\njtcrMXGT/v3vt0z317lzNz300P+qRYtWpsv79h2kW28dp927t+vll58xBImtVqtmz35a8fGd1KhR\nlGkbf+Ts6wUAAAC4W10NpRJGBeqn8ePH65dfflFmZqZN/ejRo/roo480ZswYl+ynrKxMc+bMMb2W\nNHjwYJdce33yySc99vrqggULVFBQYKj7+flp8uTJGjZsWIWjnv5RWFiYhgwZoiFDhmjt2rWaO3eu\ncnOND0d/8cUXuuqqqxQbG+tU/2sbq9Va6Z/n+RFT6+N1YwAAUPMIpDqhYcNGF/5dXFxkuk5gYKDN\neuV5/fWXlJ5unOK4Y8eueu65ORWOnmSxWDR06LVq0yZeTzwxWenpZ2yWf//917r66hvVtWv3Cvti\nsXgZaoWFhVq16mtJkpeXl+69d6puvtl4c7h9+86GWnFxsT791HyEu4ceelJXXjmiwj4FB4doypTH\n5efnp08++bfNMqvVqvfff1tPPPFChe3Yk5qacuHGc0BAoGbNelNxcR3L3SYqqolmzpyv55+frrVr\nvzcs/+yzD3TzzX+ukZFFPen4AVA9/vjEcHFxsek6AQEBlR7d8o033lB6erqh3qFDBz399NMVjm5q\nsVh0xRVXqE2bNvrrX/9qCDeuWrVKV111lbp06VJhX7y87H3urLqw/O6779bo0aMN65lNDY+Kbdli\nfJhCkvr27euS9ps2baqWLVvq2LFjhv3W9WmpPEF9DaZyfl67zs9d+XoVFxdr3ryZpssGDhyqv/51\nZqUu0Hfs2FVz5izWww/fq6SkgzbLzgdwH3306QrbcfXrBQAAALhDXQulEkYF6q+wsDBNnjxZL7xg\nvE7x4YcfasCAAWrRwvgwb1V99dVXpiN5hoeHa8KECU6378n27dunX3/91VD38vLSM888U6n7BOUZ\nOHCgYmJi9Pjjjys/P99mWVlZmRYuXKhnnmFgnYrU1+vGAACgZhnvksEt9uzZodWrvzXUGzRopGee\nebVKgcbY2DaaNs38JumSJQsq1YZZMCgt7ZQSEzdJku6++37Tm6f2bNmy3vRmfqdOl1bqZvcf3XXX\n/QoPjzDUN21aY3cKiMooLCy88O/p05+rMIx6nsVi0cMPP6UmTWIMy/LycvXDD9+YbOVannb8APB8\ne/fu1Y8//mioN2jQQE899VSFYdQ/atWqlelorZK0dKn5tMkXMwsJpaWl6ZdffpEkjRs3zjSMCsft\n2bPHUAsPD3fpaLMdOnQw1JKTk5WVleWyfaB8iYmJmjhxoiZMmKCtW7e6uzu1iqedX9XH8/OqWLny\nS508ecJQb926rR599Jkqjb4RFBSsp59+Rf7+/oZlq1atqNQIpq5+vQAAAAB36dI/XINvbmxTOx9K\nPXUk385WnsdeGLX38AaEUYF6on///howYIChXlxcrLlz58pqtZpsVXmnT5/W4sWLTZdNmjRJ4eHh\nTrXv6dasWWNaHzVqlNNh1PPatGmjKVOmmC5LTEzUqVOnTJfBiOvGAACgOhFI9RBfffWJaf2BB6Yr\nNDSsyu316NFXgwYNM9R37PhFhw8fqHB7s6k509PPqKSkRO3bd9Ytt9xZpf5s355oWh869LoqtSOd\nm9bhiiuuMdQLCgq0b9+uKrd3sR49+iohYXCVtgkKCtKtt95lumzNmu+c7lNFPO34AeD5VqxYYVqf\nPHmyQkNDq9xe9+7dTS/m7dy5U0lJSRVub/a5k5GRoZKSEsXHx+umm26qcp9gX3FxsQ4ePGiou3qq\nJ7NAqiTTUQJQvc5fYBw/fjwXGCvJ086v6vP5eWUsX/6haf2uu+43DZZWJDq6qa6++kZDvaysTN98\n81mF27tWUfPSAAAgAElEQVT69QIAAADcqUv/cA240XbmgtoUSrUXRu0xNFK9r67cTEMA6gZ7wdBd\nu3bp66+/dqrt+fPnG0bulM4FYQcOHOhU27XBzp07TevXXnutS/czZMgQxcXFmS47P+MaKo9gKgAA\nqA7Gu2SocTk52VqzZqWh3rJla/XrN8Thdm+44XbTMOTq1d/qkkvaOdzumDH3VGmEIUmKi+uo66+/\nVRkZZy78SU8/4/B0lB06dDWdYvTw4f3q1OlSh9o8b8yYex3a7vLLh2vBglmGabR37dqm/Px8BQZW\nz/RFte34AeB+OTk5Wrt2raHeokULJSQkONzu9ddfr3Xr1hnqP/74o1q3bu1wu7fddluVP3dQvkOH\nDhk+ryT7AVJHxcfHm9b37NmjPn36uHRfqJyff/5ZEydOZEqmCtS286u6fn5ekSNHDikpyRiyj41t\no759Hb/hc+ONY/T558ag69q132vcuEkOt+vI6wUAAAC4W7fB52ZFWPfZ7zMtnA+lDhkTo+jY6rn+\n7azywqgJIxq6qVcA3CUiIkLjx4/XrFmzDMsWL16svn37qmHDqr83rF27Vj/99JOhHhYWpsmTJzvU\n19omOTnZUGvQoIGaNGni8n0NHz5c+/fvV3R0tGJjYy/8adeO+5eOSkxMVGJiIteN/4/VatXu3dv1\n88+btW/fTp08eUIZGWdUWFggLy8vBQYGqVGjKDVv3kodO16qPn0GKiameY31LysrU+vX/6Bfftms\npKSDSk9PU0FBvvz8/BUaGqZGjaLUseOluuyy3urRo69Lr0UeOLBX69Z9r127tik5+bhycs6qrKzs\nws+kVas2FwYAc2RgBwBA3UAg1QNs2rTGZrr48665ZpRT7Xbu3E1RUU2UmvqbTf2nn9bpnnvMpzOo\nSFhYuHr3No6AV5ErrrjGdNQkRzVr1tK0npWV6VS7ERGR6ty5m0PbBgUFq2PHS/Xrr7ZPj5WUlOjA\ngT3q2rW7U32zpzYdPwA8w+bNm03fN66++mqn2u3UqZOioqKUmppqU9+yZYvuust8FOmKhIWFqVev\nXk71C0ZHjhwxrV9yySUu3U+LFi3k7+9vON7s7R815/wFxu7du2v8+PH1/gLjxWrT+VVdPz+vjC1b\n1pvW+/Yd5FS7MTHN1axZCyUnH7epHz9+RGlpqWrUKKrKbTr6egEAAACeoLaFUgmjAjAzZMgQrVmz\nRps3b7ap5+bmasGCBXryySer1F5OTo7efPNN02UTJkxQRESEw32tLcrKykxHh42MjKyW/Q0dOlSD\nBw+utsGA6rP6HkwtKSnRihWf6uOP39Vvv500Xae0tFTFxVk6ezZLhw8f0Jo13+mNN2arc+duGjPm\nXvXs6djAL3/720PavNl20JdrrrlRDz30+3tSQUGBlix5Q19++ZHp9ev8/Dzl5+cpNfU37d69XR9/\n/K5atbpE99zzgFMP7kvSoUP79cYbs+3OvJWdfVbZ2WeVlHRQq1d/q4CAAI0ceavGjh2vgIAAp/YN\nAKh9CKR6AHvTWHbr5nwAp2vXHvruu69saklJB5WTk62QEEemZO4jLy8vp/vlrODgENN6dnaWU+12\n7+7cE0IdOnQxBFKlcyNDVVcgtTYdP9VlwoQJ7u4CJD3zzDPu7gIqaf/+/ab1Sy91fgS7Ll266Pvv\nv7epHTlyRDk5OQoJMX/vLk+3bt084nOnrvntt99M665+Wt1isSgqKkrHj9uGuU6dOmXzNe/j7nN+\nxNTQ0FDd1O1f7u6Ox6hN51d1/fy8Mnbu3GZa79Wrv9NtX3ZZH0MgVZJ2796uQYOGVbk9T3m9AAAA\nAEeVF0odOraZGrXwjMABYVQA5ZkyZYp27typ3Nxcm/rGjRu1bt06DRhQ+YdJFy5cqIyMDEO9T58+\nGjLE8Zl2ahOLxSIfHx+VlJTY1AsKCqplf76+vvL19a2WtnFOfQymHjiwV7Nm/U1Hjx52aPudO7fp\nr399QIMGDdNDDz1p93qpPUFBxvXz8n5/j0pJSdaTT07ViRNHq9Tu0aOH9dRT/0933TVZY8bcU6Vt\nz/vmm881b95M05n37CkoKNBHHy3Rpk1r9PzzcxUd3ZRZowCgHiGQ6gHMbngHBgYpNraN02137Hip\n4Ya3JB08uNehG+pxcZ2c7pMr+Pn5m9aLioqcardDhy5Obd+qlfnIcidPGm9iu0ptOn6qS2Ki+ZNY\nAMyZBVIDAwPVqlUrp9vu0KGDIZAqnZsi3pHAa1xcnNN9gtHFgdDzGjdu7PJ9RUdHVxhI5X3c/bKz\ns93dBY9Sm86v6vr5eWUcOrTPtN6mTbzTbdt7zY8ePSSp6oFUT3m9AAAAAGfYC6Wu+neyrviT+0Op\n9sKolw6OIIwKQNK5qeT/8pe/6NVXXzUse/PNN9WtW7dKDbCwfft2ffvtt4Z6cHCwpkypP7MNWiwW\nhYWFKT093aZ+8uRJZWVlKTw83E09g7PqSzB1w4bVmjnzr6ajjlbVmjXfKSnpoGbOnF+lGZb8/Y3X\nV/Pz8yRJp0+f0qOPjtfp0+b3dirjnXfmq1mzllV+yP6///1Cr7zyrMP7PX78iKZN+4vmzFnCg/oA\nUI8QSHWzkpISHT5sDAZFRTVxyQdyTExz0/qJE0cduuFtbyrOuiImpoVT20dHx5jWT51Kcapde2rb\n8QPA/UpKSpSUlGSoN27c2CXvG02bNjWtnzhxwqFAarNmzZztEkyYBVIbNmwoPz8/l+8rKsp4waWw\nsFCZmZn1Yroq1D617fyqrp+fV6SgoMD0QmyDBo1cMm1bkybmn0Nmo6ZWRn1/vQAAAFB3mIVSS0vc\nH0otL4w68MZGbukTAM905ZVXau3atYaH5dPT07Vw4UJNnTq13O2Lioo0b94802Xjx49XgwYNXNbX\n2qBp06aGQKrVatUXX3yhsWPHuqlXcJW6HEz9+efNev756YYRfs/r2rW7EhKGqGXL1oqMbKiiokJl\nZJzR7t3btWnTGh0/fsSwzfHjR/Q//zNFr7yysNIjpXp7G6M7BQX5Kikp0XPPPW5zDTQ4OES9ew9Q\n69ZtFRl57mGbs2ezdOTIQW3Zsl6ZmcZRmyVp7ty/q2fPfgoKCqpUnw4d2q85c16wu7xDhy4aMmS4\nWrSIVUREA+Xl5Soj44y2b0/U+vU/KD393Hliaupvmjnzr7rhhtsqtV8AQO1HINXNsrPPmg5tfv7E\nwVn2bqCmpCQ71F50tHnQyFFlZWU6fPiA9u/frWPHDuvUqRRlZJxRbm6OCgsLVFJSotLSEpWWlqq0\ntFRlZaUqKSmxe0LoLGcDqfZet6ws85M+Z9W24weA++Xk5Nh534h0Sfv2pny3N0V8RczCjHCe2RRS\nDRtWzwghjRqZ3+zJyMggkAqPVNvOr+r6+XlF0tJSTev2gr9V1aSJ+QNn5y+mVpWrXy8AAADAnTwt\nlEoYFUBVTZkyRZMnT1Z+fr5N/dtvv9WQIUPUtWtXu9t+8MEHSk42Xs/p2bOnhg2r+qwqtV2PHj20\na5dx1qH//Oc/atmypQYNGuSGXsHV6low9ezZLM2a9ZTptc3Y2DZ64IEn1LlzN9Nt+/UbonvvfUCr\nVq3Q/PmzlJNjOwvZ0aOH9frrL+mxx56pVF+8vb0NtaKiIn300RLt3btTkhQQEKg//ek+jRp1h3x9\nfU3bKSoq0tKl/9SHH75jWHb2bJZ+/PG/uuaaGyvVpzlzXjC9Vh4aGqaHH/6b+vUbYrrdoEHDNHHi\nI/rww3f0/vtvq7i4WNu2bXHZNXYAgOcjkOpmubk5pvVt27Zo+PDqO4FzNCAZGFi5p2UqcuDAXn31\n1SfasOEHZWVluqRNV4iIcO5pxZCQUNP6xSegrlLbjh8A7pebm2ta//XXX3XddddV236zsrIc2s4V\no9vBqKCgwFALCKiem0Rm08zY6wNqjtVqlcVicXc3PFJtO7+q6+fnFbH3cwsJCXNJ+0FB5iMYuPv1\nAgAAADyFp4RSCaMCcERUVJTuvvtuzZ8/37Bs3rx5mjt3run1zSNHjuiTTz4x1IOCgjRlypRq6aun\nGzBggJYuXaqysjKbemlpqV566SUdPXpUt9xyS7Vdh0bNqivB1Ndff8n0wfOOHbvquefmVDi6qcVi\n0dCh16pNm3g98cRkpaefsVn+/fdf6+qrb1TXrt0r7IvZ7FynTp3UBx8slCSFhYXrhRdeV7t27ctt\nx8/PT/fcM0W5uTn68suPDcu///6rSgVSN29edyEI+0e+vr564YV5iovrWO72Pj4++tOf7lPbtu01\nY8bDKisr0w8/fFPhfgEAdYPzc07CKbm51RNUrEh29lmHtgsIcC4YdOZMmp599jFNmTJWK1Z86nE3\nu539Jcjez6eoqNCpdu2pbccPAPfLyTEPWnnqfu2FGeGcwkLj51J1/aztfbaa9QHVz2o9d2OOMKp9\nte38qq6fn1ekoCDftO6qmxv238McC9U7+3oBAAAAnqjb4AgNuCj0eT6Umna8+h9IPZNMGBWA4669\n9lrTkVCTk5P1/vvvG+plZWWaM2eO6YiK9913nxo3blwt/fR0zZo10/Dhw02XWa1WffDBB5owYYKW\nLVtmOoNXddqyZYuOHDlid8AOOC4xMVETJ07UhAkTtHXrVnd3p0r27Nmh1au/NdQbNGikZ555tcIw\n6h/FxrbRtGlPmy5bsmSBw33MyEhXQUGBvLy89Mwzr1YYRv2jO++caHrfZ//+3SotLa1w+y+++I9p\n/a67JlcYRv2jPn0GaNy4SZVeHwBQNzBCqpvl5bnnxLe4uMih7Xx8HD9kjh8/okcfHa+MjHSH27BY\nLPL19ZWXl7fdm8+OOteucxlts6H0JZkOZe8Kte34AeB+F089VFMcfR905nMH9tVkIJURUj3D+RFR\nCaJWrLadX9Xl8/PKsPdzc1Xw09/fPJBaVFTzrxcAAADgydw1UuqZ5AKtWmoMo3buH04YFUClWCwW\nTZ06Vffff7/huumyZcs0ePBgtW7d+kLtyy+/1L59+wztdOvWzW4gs77485//rG3btiklJcV0eVpa\nmt5++20tXLhQ8fHx6tmzp7p166a4uDi791hdYdKk38NwgYGBaty4saKiotSoUaML/27cuLHNH3vT\nocNcbRwx9auvjKMcS9IDD0xXaGjVZ1/q0aOvBg0apjVrvrOp79jxiw4fPqBLLmnnUD8ladSoO9Sh\nQ5cqbRMeHqFu3Xpp8+Z1NvXCwkIlJx9Ty5at7WwpZWVl6uefNxvqoaFhGjny1ir1Q5JuvHGMPv/8\nQ9PRaAEAdRN3w+ops6f2qlNq6m+aPn2y3Zvdvr6+6t69jzp16qZWrdqoUaMohYaGKSAgUL6+fvLx\n8ZGPj8+FwOiZM2m6446rXdpHHx/nf7GwF/Koa+GPmj5+ANR+vG94DnvhYD8/v2rZn70Ld9X1sAZs\nEUStPTg/d5T5sX1+NGBn2WuH/1MAAACAUU2HUs+HUUuKjWHUITfXzxEKATimadOmGjdunP75z3/a\n1EtLS/Xaa69p9uzZ8vb2VmpqqpYsWWLYPiAgQFOnTq2p7nqs8PBwPfPMM5o2bZqysrLsrme1WrV3\n717t3btXS5cuVWBgoNq3b69OnTqpU6dOiouLc9nsNxfLz8/XsWPHdOzYsXLXCw4OVkREhMLDw03/\nvrgWGRlJiFW1J5iak5OtNWtWGuotW7ZWv35DHG73hhtuNwRSJWn16m8dDqR6e3vrppvGOrRtXFwn\nQyBVklJSkssNpCYmbjIdRXXgwGEODW4SEBCgESNu1pIlb1R5WwBA7UQg1c18fc3DH126XKbRo/9U\nbfsNC4uotrbNzJ37d6WlpRrqFotFw4Zdp7vumqxGjaJqtE8XKypyfupge0GC6voFpL4cPxV54w1O\nXoHKsvd+1LlzZ914443Vtt+wsKo/TYrq4evrK4vFYghZOTraX0UqE4Cta+/jEydOdHcXqhRE7du3\nr0aOHKkD39RAx2qB+nJ+VRvOzyvD3udaYaFrRmG21051hfgBAACA2q6mQqmEUQG42siRI7Vu3Trt\n3r3bpn7gwAEtX75co0aN0vz5801nIbvnnnsUHR1dI/185JFHqn0f8fHxevnllx3aNiYmRq+88ope\nfPFF05FkzeTn5+uXX37RL7/8IuncDDNt27ZV586ddemll6pr1641PutMbm6ucnNzlZycXKXtIiIi\nFBQUpODgYIWEhCgoKOjC18HBwab/DgwMlLe3t3x8fOTt7W3z5/xD4X+s1Qbng6ndu3fX+PHjPS6Y\numnTGtOZ5K65ZpRT7Xbu3E1RUU2UmvqbTf2nn9bpnnumONRmr1791bChY6O+N2vWwrSem5tT7na7\ndm2z05d+DvVDknr3HkAgFQDqEQKpbhYcHGJaDw0Nd+rpG0+ybdsW/fTTetNlU6Y8rhEjbq7hHpkr\nLS1VSUmJU7/Q2JumNDAwyOE2y1Mfjp/K8LRfYuqrU6dOubsLqITg4GDTemhoqBISEmq4N3AXPz8/\nw8UWs4svrmCv3T8+Rcv7uOtUJYg6YsQIjR8/XjExMZKkA98crO7u1Qr14fyqtpyfV0ZQkPnnmtnN\nIUfYO78PCAh0SfsAAABAXVTdoVTCqACqg5eXl6ZOnaqpU6caHt5/9913VVpaqi1bthi269Kli669\n9tqa6matEB0drVmzZmnFihV67733yh0t1UxJScmFEVQ//vhjBQUFqXv37urTp4/69etXbaOnukJm\nZqYyMzPd3Q2P8fPPP2vixIkKCQnRzZe95e7uXLBv3y7TerduvZxuu2vXHvruu69saklJB5WTk62Q\nkNAqt9elS3eH+2JvEIT8/Nxytzt4cK9pPT6+k8N9adeuvSIiIpWZmeFwGwCA2sPL3R2o7yIiGpjW\nK3oqpTZZufJL0/pNN/3J4Zvdrhrx6GJ5eeWffFXE3usWGlo9IwPWh+MHgGtFRJj/8pmb69z7H2oX\nsylVqiuQWlBg/pntyRcNa6PzI95WNoi6fPlyzZgx40IYFb+rD+dXten8vCLh4ZGm9ezsqt3osCcn\nJ9u0HhnZ0CXtAwAAAHVVt8ERSrjO9rz5fCg17bjjvz8QRgVQnVq0aKE//ck4Q05hYaEWLVpkqPv7\n++vBBx+s1DW5+sbb21sjRozQwoULNWnSJLVubX968Irk5eVp3bp1mj17tu666y4tXbqU0Gctk5Pj\nWddWzQKpgYFBio1t43TbHTtealq3F/KsSLt27R3ui5+f8V6QVPGMeceOJRlqwcEhatjQuXOtli0v\ncWp7AEDtQSDVzSIiIk0DGenpaSZr1z5Wq1Vbt24w1H18fDRmzL0Ot1tdP59Tp1Kc2t5ev6rrhnVd\nP34AuF54eLhpGDEjgycS6xOzzw57wVFnVWaEVDiOIKrr1fXzq9p2fl6Rxo2j5eVl/LX25MnjLmnf\nXjuNGkW5pH0AAACgLusxLNJuKPVMctWvQxBGBVATRo0apXbt2lVq3XHjxqlp06bV3KPaLSAgQCNG\njNC8efM0f/58jR07VvHx8abXcyojOztb77//vu655x69/fbb1XZdG3VXSUmJDh/eb6hHRTVx+Lj8\no5iY5qb1EyeOOtRegwaNHO6LvZlhz99XMHP2bJbpIF5Nmjh/T6FZsxZOtwEAqB0cn5scLmGxWNS8\neSsdPLjPpp6cfEwFBQW1fvSwM2dOmw673qlTN6dGDd2/f7cz3bIrOfmYU08ZpaaaB1qbNGnmcJvl\nqevHDwDXO/e+0VyHDh2yqScnJ/O+UY9ERkYqNTXVpnbmzJlq2Vdamr2HNcxHNUTlWK1WWSyWSgdR\nx48fTwi1kur6+VVtOz+viK+vr5o0idHJkyds6pmZGcrNzVFwcIhT7V/c7nktWsQ61S4AAABQX/QY\ndu73/41f/X7dobTEqlVLk3XF2GZq2Kxyv2PZC6N26BNGGBWAS3l7e+uhhx7Sgw8+qJKSErvrdezY\nUSNHjqzBnp0TExNT7Q/7N2tWPfc1W7VqpVatWmnMmDHKycnRrl27tHPnTu3atUuHDh0q9+d9scLC\nQi1btkybN2/mAXxUSXb2WRUXFxvqrhpgyl4uICUl2aH2goKcu75ZVRkZ5veK7M0sVhXR0fw/BYD6\ngkCqB2jXrqPhhndZWZmOHDmo9u07u6lXrpGRkW5ab9XKueHYN21a49T29hw9eqjilcphNny9VL03\nrOvy8QOgerRr184QSC0rK9PRo0cVHx/vpl6hJjVp0kT79tl+dpw5c0bFxcXy9fV16b4uDr5K50ZH\njYiIcOl+6guCqDWjLp9f1bbz88qIi+toGhzdt2+Xunfv41Tbhw7tM623acPnJQAAAFBZZqHUkuLK\nh1LLC6MOvY3ZCwC4XmxsrG6//XYtXbrUdLmfn58efPBBl4ymWFWPPPKI2rd3fHAdTxESEqI+ffqo\nT59z124KCgq0f/9+7d69W7t27dLu3bsrNfppcnKyHn/8cc2cOdNukLZt27ZKS0tTZmamS78H2Hf+\nOrYnys3NMa1v27ZFw4f3rLb9ZmU5NlNhTc82l5191rQeEhLqdNsBAYFOtwEAqB0IpHqArl17aMWK\nTw31detW1fob3jk5rj9hOX78iH79davD25cnMXGTxo2b5PD2e/bsMK1X5w3runz8AKgeXbp00Tff\nfGOor1+/nkBqPREdHW1aT01NdfnT76dOnTLUoqK4WVRVBFFrVl0+v6pt5+eV0aVLd61e/V9DfevW\nDU4FUq1WqxITNxrq3t7e6tChq8PtAgAAAPWRo6HUCsOonpl1AVAH3HLLLVqzZo2OHTtmWDZmzBg1\nb24+LTccExAQoK5du6pr13PXXEpLS7V792799NNPWr9+vel15vPS09P197//XS+//LL8/PwMyz/4\n4ANJUnFxsU6fPn3hT1pamk6fPq3U1FSbr3NzjdOVo3Kqch3bXXJzs92yX3tBT09TUJBvWndFmJRA\nKgDUHwRSPUDv3v3l4+NjmIbgxx//q7vvvl/e3t4Ot7158zotWjRPCQmD1afPQMXHd6rRE0B7JxWF\nhYUOt7lkyRsOb1uR/ft3Kz39jBo0qPqQ/AUFBdq1a5uhHhoaptjYNq7onqm6fPwAqB49e/Y0fd9Y\nu3atxo0b59T7xpYtW/TOO++ob9++6t27t+Li4njf8EBNmjQxrZ86dcqlgVSr1Wo6Qqq9/cOIIKp7\n1OXzq9p2fl4ZffoM1Ny5Mw31jRt/1H33OT5aye7d25WVZRw5o2vXHgoM5OIpAAAAUFVVDaUSRgXg\nTj4+PmrVqpVpIPWSS5ybaQYV8/b2VpcuXdSlSxfdfffd2rp1q9577z0dOHDAdP2kpCR9/vnnuuWW\nW+y26evrq5iYmAqvnxYVFSkzM1OZmZnKyspSVlaW4euL6zk55qNu1he1IYh6Xl6eewLHxcVFbtlv\nVZWUFJvWvbwcvyZ+Xk2P9goAcB8CqdWstLS0wnVCQkLVu/cAbdiw2qaemvqbvv56mUaOtH/iXJGP\nPlqspKSDSko6qPfee1sNGjTSDTfcpttvv9vhNqsiNDTctH7y5HGH2tu48UetWfOd3eVlZRX/vMtj\ntVr16afv6d57H6jytmvXfqeiIuOJZI8eCdU6ZUddPn4AVF3lPndC1KtXL23caDvqW2pqqlasWKER\nI0Y4vP+PP/5YR44c0ZEjR/TBBx+oQYMGGjlypG699VaH24TrtWrVyrR+6NAhde/e3WX7OXHihGnI\nzd7+8TuCqNWH8/PadX5emderceNode3aXdu3/2xTP3nyhNau/V6DB1/p0L4/+miJaf3yy692qD0A\nAAAAlQ+lEkYFAJzn5eWl3r17q2fPnlq2bJkWLVpkut5nn32mG264wXSU1Krw8/NTVFRUlWf6ysnJ\nUU5OjvLy8pSXl6f8/HxlZ2crLy9Pubm5F/7+47/z8vJUVFSkkpISlZaWXvhz/uuL66WlpR4Vfq1N\nQVR3u3jwA09ltVrtLXG6bbMsBQCgbiKQ6iI+PuY/yszMjEptf9NNYw03vCVp8eIF6tt3kBo3Np9a\ntzyff/6hduz4xaaWnp5m9yZ0dWjSJEYBAQEqKCiwqW/fnqiCggIFBJhPw2Pm0KH9eumlv0k6N7JT\naWmJiottn9DJzXX+BHz58v/o+utvrdLPvLi4WB9++I7psssvH+50nypSV48fAPbZG50vKyurUtuP\nGjXKEEiVpKVLl6pPnz5q3Lhxlfv0xRdfaOfOnTa19PR0hYY6Pg00qkebNm3k5+dn+OV/7969Lt3P\nvn37TOsdOnRw6X7qEoKorsP5uTlPPT939vUaNeoOQyBVOjd6a+/eA6o8ounOndu0ceOPhnpERKSG\nDKn+83sAAACgLqsolCrJNIwa1yOUMCoA1GNeXl66+eab5efnpzfffNOwPDMzU7t371a3bt3c0Ltz\ng4GEhIRU+3569uxZ7fuoSFWuY/ft21cjR47UgW9qoGOV4OtrHlju0uUyjR79p2rbb1hYRLW17Ure\n3ubXaSszcEBFCgsLKl4JACrh+PEjuu++mw314OAQLVtmvLfnadvXBwRSXSQoKNi0vm/fTtP6xTp3\n7qbevQfop5/W2dSzs89q+vTJ+sc//qXIyAaV7s/333+tN96Ybag3aNBIQ4deW+l2nOXj46P4+M76\n9detNvXc3Bx9+ul7GjPmnkq18/PPm/X889MvDKF/993366uvPtGxY0k26yUnG6fNMFNWVmZ3WUFB\nvp566v/pH/94S0FBQZVqb8GCf+j48SOGetOmzdSrV/9KteGMunr8ALDP3vuTvQDgxTp16qRevXpp\ny5YtNvXs7Gw9+eSTevHFFxURUflfjletWqV//vOfhnqDBg10+eWXV7od1AxfX1+1bdtWu3fvtqm7\nOpC6Z88e0zqBVCOCqK7H+bk5Tz0/d/b1SkgYrPj4Ttq3b5dN/cSJo5o162968skXKz1rwcmTJ/TM\nM9NMl91xx31MLQUAAAC4QI9hkbJapU1f24ZSv383WVZJZSW2YdT2vUI17I6qPxgIAKh7rr/+en33\n3VDZNdIAACAASURBVHc6dOiQYdmOHTvcFkitD5y5jn3gm4PV3b1KCQ42Dw2HhoarX78hNdwbz2Pv\n2mdBQb7TbRNIBYD6o/rmEa9ngoKCFR5uDO4cPnyg3Cks/2jKlMcVEmIcRe7EiaOaPPmOSrWTkZGu\nV199Ti+99DfT0OUDD0yv0qhHrmDvBvu7776plSu/LHfbM2dO67XXXtATT9yvnJxsSVJcXEeNHHmL\n6ahUSUkHlZaWWmGfzIaaj4lpri5dLpN0brSnBx8cp717y78BXlBQoFdffU5fffWJ6fI//ekvdkcx\ndLW6evwAMBcUFKTwcOOIeklJSVq7dm2l2pg0aZLp07onTpzQAw88UKl2MjMzNWfOHM2ePdv0fWPy\n5Mm8b3gos1BoZmamUlJSXLYPs4Brs2bNTI/d+ur8OUllL+AtX75cM2bMIIxaCZyf2+eJ5+fOvl4W\ni0VTp/6P6Uir69f/oMcfn6hTpyp+f1u1aoUeeuguZWVlGpa1b99ZI0YYn3gFAAAA4JieV0aqzzW2\nD/qVllgJowIAKjR8uPkMNqmpFV+HQtXVpevYERHmgwy4YibWuiA42HzWQ1f8fNLT05xuAwBQOzBC\nqgvFx3fSTz+tN9RfeOEJrVz5hdq16yCLxaIzZ9J0/HiS7rjjPvXo0ffCetHRTfX448/p6acfUUlJ\niU0b6elpev756Vq0qLkSEoaoTZs4RUY2lI+Pr3Jzs3XixFHt3LlNW7duMGx73g033OaWp3quuOIa\nLVnyhuFGdGlpqf7xjxn65pvPNHDgMLVoESt//wDl5GTr2LHD+vXXrfrll59shn8PDQ3TX/86U97e\n3oqL66jExE02bVqtVs2Z84KmT3/e7ihL5/Zt/Bn5+wdo8uTHNHXqnSouLtaxY0l68MG71LlzNyUk\nDFHLlq0VGdlQZWWlOnPmtLZvT9Tq1d8qIyPddB+XXtpTw4ZdV5UflVPq6vEDwL527dpp69athvqL\nL76o7777Tu3atZPFYlF6erqOHz+u22+/Xd27d7+wXnR0tKZNm6bnnnvO5H0jXTNnztTixYuVkJCg\n1q1bKzIyUj4+PsrNzdWJEye0e/duJSYm2n3fGDlypBISElz7TcNlevbsqU8+MT5QsXnzZt14441O\nt3/q1CkdOWIcPdwTphPyBIyIWjM4PzfniefnkvOvV9u28Zo8+VHNmfN3Qxvbt/+se+4ZpZ49+ykh\nYbCio5sqPDxSeXm5ysxM1549O7Rhww86efKEad8aNGh04fsEAAAA4Dq9rmogLy+LNn51xnR5XI9Q\nDR1DGBUAYKtZs2am9bNnz9ZwT+q2ungdOyIiUgEBASoosB2tk7DkOfZmBXPFz8fetVcAQN1DINWF\nLr/8GtMbqFarVT/9tN6wzGxI8t69++uJJ17QSy/9rwoLCw3LT548oU8+WVrlvl155QhNmmQ+7WR1\n8/X11aOPPq3p0yebjky6c+c27dy5rcJ2AgODNGPGy2rS5NxJbN++g/T++wsN623evE5jxgxXs2Yt\nlZuboz59Bmry5Edt1jELBQQHh+iSS9ppypTpeuWVZ6vcvz+Kjm6q6dOfr9TJuSvVxeMHgH2XX365\naSDVarVq69athmVm7wu9evXSY489ptmzZ5suT0lJ0bJly6rct6FDh2rChAlV3g41p3PnzoqMjFRG\nRoZNfcOGDS4JpK5fbzwnkqSBAwc63XZtVhcv4Hkyzs/NeeL5ueSa1+u6625Sbm6O3n57rmFZSUmJ\nNm1ao02b1lT4vf1RVFQTvfDCPEVFNanSdgAAAAAqp8ewSFmt0qavbUOp8T1CdeVYwqgAUJucOXNG\naWlpio+Pr9b9hIaaj+JoNkMRqq4uX8e2WCxq3ryVDh7cZ1NPTj6mgoKCej/r37lBF3wMeYrKzD5V\nkZMnjzvdBgCgdvBydwfqksGDr1RcXEen2xkw4ArNnv22WrW6xOm2/P39NWXK45o2bUaNhyP/qFu3\nXpo69X8cHlEoOrqpXnxxgTp37nah1r59Z5uv/6igoECHDu3Xb7+dVHFxsWF5UZExTBAUdG7a6quv\nvkEPPDDd4b7GxrbRrFn/VIMGDR3a3ll18fgBYG7gwIFq166d0+30799fL730klq2bOl0W/7+/po0\naZIefvhh3jc8nJeXl/r162eo79692xBSdcSGDRsMtcaNG6t9+/ZOt10b1aUpjWoTzs/t87Tzc8l1\nr9ett47TU0/9Q+HhEU631bfvIM2bt1QtWsQ63RYAAAAA+3peGaneV/8+IhdhVADwfKWlpdq8ebOW\nLl2qGTNmaOzYsbrzzjv15JNPmj7Y7Ur2rmEHBQVV637ruvpyHbtdO+M1yLKyMh05ctANvfEsXl5e\natq0uaGel5er06dPOdzu2bNZOnHiqDNdAwDUIgRSXcjb21tPPfUPtW7d1um22rVrr/nz39MDD0xX\ns2Ytqrx9YGCQbrjhNi1a9LlGjrzF6f64wrXXjtLf//56lX4+AQGBuummsVqw4H3Fx3cyLH/kkRlq\n3LjqF6VycrINtYiIyAv/HjHiZr366iJ17Ni10m36+/vr1lvH6bXXFis6ummV++RKdfH4AWDk7e2t\nJ598UrGxzodk2rZtq7lz52ry5MkOXTgIDAzUyJEj9dZbb2nEiBFO9wc1Y8gQ41ThVqtVa9eudard\nU6dOac+ePYb6wIED611Qub5cwPNUnJ+Xz5POzyXXvl79+g3Rv/71sW677S4FB4dUefuuXbvr+efn\n6umnX3ZJsBUAAABAxXoPb6CeV0aq25AIwqgAUAt4e3vrzTff1Pvvv68tW7ZcCInm5eVp48aN1brv\nw4cPm9abNWtWrfutq+rbdeyuXXuY1tetW1XDPfFMl1xiPhjOnj07HG7z5583m87WBQCom3zc3QFP\n8cIL81zSTqNGUZo79119++3nWrv2eyUlHVBOTrb8/PwVGhqmsLAItWkTp3btOqhDh/LDjj4+Phox\n4maNGHGz9u7dqcTETdq3b5dOnjyu9PQ0FRTky2KxKDAwSCEhoYqJaaHY2Lbq2rWHunfvIz8/P4e/\nj0mTplXLFKKXXtpTCxa8r61bN2rr1g3auXOb0tPTlJ2dJavVquDgEDVu3EStW7dVjx591bv3gHJv\nIMfENNeCBe/r00/f06ZNa3Ty5AkVFRUqMDBI4eERatGitS67rLdhu7fe+rjCvsbFddQrryzUvn27\ntGnTGu3evV0nThxVTs5ZFRYWyt8/QA0bNlJsbFt1795HgwdfpdDQMId+LjNmzHZou/K48/gBULFn\nn33WJe00atRIr776qv773/9q/fr1SkpKUm5urvz8/BQaGqqwsDC1bt1abdu2VYcOHcpty8fHR9dd\nd52uu+467du3Tz///LP279+vlJQUpaenq6Cg4P/eNwIVHBysmJgYxcbGqkuXLurWrZtT7xsTJkzQ\nhAkTHN4ejunYsaPatWunAwcO2NSXL1+ukSNHOhweXb58uaHm7e1dL8PKdXFKo5rC+bmtun5+fp4r\nX6/w8Ajdc88UjR07XomJG7V9e6IOHtyrlJRkZWdnqbCwUD4+PgoKClbjxtFq0aK1OnTooj59BqpJ\nE+f+P1bX6wUAAADUdX2vdc/MYwAAx/Tv31/Lli0z1JcsWaKEhAT5+/u7fJ9Wq1WrVpkHByu6DwJb\nVqtVFoul3l3H7t27v+m09D/++F/dfff9Ds8qJUmbN6/TokXzlJAwWH36DFR8fKdaN1BHx46X6scf\nVxrqiYkbNWjQMIfaXLv2O2e7BQAXtGgRq2+/3Vprt68PCKRWA19f3ws3ql2lffvOat++s8vacyeL\nxaJevfqpVy/jNMGOCA0N0513TtSdd050SXsXi4/vZDr6U21Sl44fAEa+vr4XgqSuEh8fr/j4eJe1\nB881evRovfjiiza1lJQUbdmyRb172w+N2ZOfn6+VK40XKgYOHKjo6Po1uklFF5nq0gU8T8f5efk8\n7fzc1a+Xn5+fEhIGKyFhsEvaAwAAAAAAwDlDhgwxDaSeOnVKCxYs0EMPPeTyfX722Wc6fvy4oR4c\nHKwuXbq4fH91UX0Nop4XEhKq3r0HaMOG1Tb11NTf9PXXy5ya4eqjjxYrKemgkpIO6r333laDBo10\nww236fbb73a22zWme/c+pvW1a7/XxInTFBgYWKX2jh8/ovXrf3BF1wAAtYSXuzsAAAAA9+nfv79p\nUPSzzz5zqL2VK1cqNzfXUB81apRD7dVFdWFKIwAAAAAAAABo06aNBg82fwh45cqVWrBggYqLi122\nv9WrV+udd94xXTZ8+HAFBAS4bF910fkp0ysbRK3L17FvummsaX3x4gU6ffqUQ21+/vmH2rHjF5ta\nenqaQkPDHWrPXVq2bK3Y2DaGem5ujj76aHGV2iorK9Mbb8y+cOwBAOoHAqkAAAD1mLe3t+644w5D\n/ddff9X27dur1FZBQYE++ugjQz0hIUFt27Z1uI91RV2/gAcAAAAAAACg/rnrrrvsBkG//PJLTZs2\nrcrXmi925swZzZs3T7NmzTJMsy5JERERuu2225zaR11GENWoc+du6t17gKGenX1W06dPVkZGepXa\n+/77r/XGG7MN9QYNGmno0Gsd7qe7XHvtaNP6e++9rcTETZVqw2q16s03X9bWrRslye77BGFVAKh7\nfNzdAQAAALjX0KFD9dVXX2n//v029bfeekuvvvqqvLwq9wzTRx99pPR024s0fn5+uu+++1zW19pg\n69at7u4CAAAAAAAAgDroueeek6+vb43tLygoSK+//nq560RFRWn69Ol69tlnVVpaalh+8OBBPfHE\nE2rbtq369eun7t27KzY2tsLvIz09XTt27NCmTZu0adMmFRUVma7n7e2txx9/XCEhIZX/xuoJq9Uq\ni8VS6SDq+PHj63QI9WJTpjyuyZN/VU5Otk39xImjmjz5Dk2aNE2DBg0rt42MjHQtXjxfK1aYzzr3\nwAPTa+XIvcOH36APP3xHZ86ctqlbrVY99dT/0913T9ENN9wmHx/zyNHx40c0d+5M/frr7/dL7rjj\nPi1cOM+wLoFUAKh7CKQCAADUcxaLRRMnTtTDDz9sUz906JC+//57XXnllRW2cfr0aX366aeG+ujR\no9WkSROX9RUAAAAAAAAA6quMjIwa3V9wcHCl1uvVq5emTp2qOXPmmIZSpXPB1IMHD2rJkiXy8vJS\ndHS0GjVqJH9/fwUEBKikpET5+fnKy8vTyZMnlZubW+F+fXx89Oijj6pr165V+r7qOoKolRMd3VSP\nP/6cnn76EcPIu+npaXr++elatKi5EhKGqE2bOEVGNpSPj69yc7N14sRR7dy5TVu3bjAdtVeSbrjh\nNvXrN6QmvhWXCwgI0MSJj+j556cblhUXF+uf/3xF//nPO+rf/wrFxLRQeHiEcnNzdObMaf3yy086\ncGCPzTYDBw5V794DTAOppaXmPz8AQO1FIBUAAACKj4/X8OHD9e2339rUFy9erD59+igsLKzc7d96\n6y0VFhba1KKionTLLbe4vK8AAAAAAAAAAM8ybNgwNWvWTC+99JJSU1PLXbesrEwpKSlKSUlxeH9N\nmzbVtGnT1L59e4fbqGsIolZd79799cQTL+ill/7XcI9Dkk6ePKFPPlla5XavvHKEJk2a5oouus2g\nQcO0a9ft+uyzD0yXZ2Zm6KuvPqmwnZiY5nrwwb8qL888ZG4v0AsAqL0qN/8qAAAA6ry//OUvatq0\nqU0tIyOjwimZfvjhB61bt86m5uXlpWnTptXKqWgAAAAAAAAAAFXXoUMHzZ07V7fddlulR1etquDg\nYN17771asGABYdT/c37K88oGUZcvX64ZM2bU+zDqeQMGXKHZs99Wq1aXON2Wv7+/pkx5XNOmzajU\n6+HpJk58RKNH3+Hw9i1bttasWf9UaGiYQkJCTdcpLCxwuH0AgGdihFQAAABIkgIDA/Xoo4/qscce\ns3kidd26dVq9erWGDDFOLXP69GktWLDAUL/99tvVqVOnau0vAAAAAAAAAMCzhISE6M4779RNN92k\nb7/9Vps3b9aePXtUWlrqcJve3t7q2rWrBg4cqP79+yskJMSFPa69GBHVddq1a6/589/TN998pmXL\n/q3k5ONV2j4wMEhXXTVSt912txo2bFRNvax5FotFEyY8rG7deutf/3pVx48fqdR2AQEBuu66m3Xn\nnRMvDFwSHBwiX19fFRcX26ybm5vj8n4DANyLQCoAwCWuu+46d3fhgvO/gHuSJ598UgkJCe7uRp10\n4403Gn55dafafvzFx8dr7Nixeuedd2zq8+fPV8eOHRUVFXWhVlZWppdfflm5ubbTrHTq1Em33367\n8x0HAAAAAAAAADeZPn26pk+f7pZ9z5w50y37daXg4GCNHj1ao0ePVk5Ojnbs2KGjR4/qxIkTSk5O\n1tmzZ1VQUKD8/HwVFRXJz89PwcHBCgwMVFBQkJo3b67Y2Fi1atVKcXFxCg8Pd/e35HEIorqWj4+P\nRoy4WSNG3Ky9e3cqMXGT9u3bpZMnjys9PU0FBfmyWCwKDAxSSEioYmJaKDa2rbp27aHu3fvIz8/P\n4X1PmjRNkyZNc+F3I3Xo0EXffrvVJW316TNAvXv317ZtW7Rp0xrt3btTKSknlJubI6vVqsDAIDVq\nFKXY2La67LLe6tdviMLCjP9nv/xyo0v6AwDwbARSAQAAYOPmm29WUlKSfvzxxwu13NxcPfvss5o1\na9aFp1kXLVqk7du322wbFRWlJ554Qt7e3jXaZwAAAAAAAACAZwoJCVFCQgIDd7hQRWFUgqjOad++\ns9q37+zubngUi8Wiyy7rrcsu6+3urgAAPJyXuzsAAAAAz2KxWPTQQw+pU6dONvXDhw9r9uzZslqt\nWrlypZYtW2azPDg4WDNmzFBkZGRNdhcAAAAAAAAAAOhcEHX58uWaMWMGYVQAAOAWjJAKAEANCAkJ\nIaQHt3H0+Js1a5b+8pe/KDk5+UJtw4YNmjdvnr777jubdX18fPTCCy+oW7duTvcXAAAAAAAAAABU\nXvfu3QmhAgAAj0AgFQDgEj/88IO7u3BBTk6OAgIC5OPjOR9zgYGBHtWfumTlypWyWq3u7sYFden4\ni4qK0ueff2667LnnnnO2WwAAAAAAAAAAoAq2bt3q7i4AAACUy3OSEgCAWi00NNTdXbjAk/qC6hcS\nEuLuLtjg+AMAAAAAAAAAAAAAAPWRl7s7AAAAAAAAAAAAAAAAAAAAgNqNQCoAAAAAAAAAAAAAAAAA\nAACcQiAVAAAAAAAAAAAAAAAAAAAATiGQCgAAAAAAAAAAAAAAAAAAAKcQSAUAAAAAAAAAAAAAAAAA\nAIBTCKQCAAAAAAAAAAAAAAAAAADAKT7u7gAAAAAAAAAAAAAAAK4QGRnp7i4AAAAA9RaBVAAAAAAA\nAAAAAABAneDn5+fuLgAAAAD1lpe7OwAAAAAAAAAAAAAAAAAAAIDajUAqAAAAAAAAAAAAAAAAAAAA\nnEIgFQAAAAAAAAAAAAAAAAAAAE4hkAoAAAAAAAAAAAAAAAAAAACnEEgFAAAAoOBwH5uv886WuKkn\nAGpSbpbt//WQCB87awIAAAAAAAAAAADlI5AKAAAAQEGh3jZfF+SWuqknAGpSQY5tIPXi9wIAAAAA\nAAAAAACgsgikAgAAADCE0PJzCKQC9UH+ReFzAqkAAAAAAAAAAABwFIFUAAAAAAq8KISWnlLgpp4A\nqEkZKYU2XweF+bipJwAAAAAAAAAAAKjtCKQCAAAAUHSLAJuvk/fnuqknAGrSiX05Nl9HtwywsyYA\nAAAAAAAAAABQPgKpAAAAAHRJ1xCbrzN+K1R+dqmdtQHUBfk5pcpMLbKptbk0xM7aAAAAAAAAAAAA\nQPkIpAIAAABQcJi3msTajoy4f2umm3oDoCbs3ZRh83XT1gEKCOIyAQAAAAAAAAAAABzDnSYAAAAA\nkqQ2F42SundTpgpyGCUVqIsKcku1f0uWTe2SLoyOCgAAAAAAAAAAAMcRSAUAAAAgSerQJ0y+/r//\nilBWatXOdelu7BGA6rJ99RmVlVovfO3r76WOfcLc2CMAAAAAAAAAAADUdgRSAQAAAEiSAoK81Ouq\nSJvagcQsnT6W76YeAagOp5LydWjbWZta7+EN5B/EJQIAAAAAAAAAAAA4jrtNAAAAAC7oNjhSweHe\nvxes0pqPUpSbVeK+TgFwmdzMYq39OEX6fXBUhUb66NJBEe7rFAAAAAAAAAAAAOoEAqkAAAAALvDy\nlq4a20Sy/F4ryi/Tjx+cVGmx1f6GADxeSZFVP7x3UsWFZb8XLdLwO5vIy9v+dgAAAAAAAAAAAEBl\nEEgFAAAAYKNZ20D1vaahTS3rdJG+W3JChXmlbuoVAGfkZpVo5eITyk4vtqn3G9FQTWID3NQrAAAA\nAAAAAAAA1CUEUgEAAAAY9BwWqRbxQTa19JRCrfjnMWWmFrmpVwAckbw/99z/3VOFNvVWHYPU/YpI\nN/UKAAAAAAAAAAAAdQ2BVAAAAABGFunqcU0UHG47j3d+Tqm+eeu4fv3hjEqLrW7qHIDKKCuTfl6Z\npjX/SVFxYZnNspAIH119Z1M39QwAAAAAAAAAAAB1EYFUAAAAAKb8A710y0MtFBnla1O3llm1e32G\nvph/VMd257ipdwDsKcwv0+4NGfpy/hHt25xpWB7R2Fc3TW0uX3+LG3oHAAAAAAAAAACAusrH3R0A\nAAAA4LlCInx068Mt9M3i33R0T57NsvzsEq1f9pu2rfJRs3YhimkXpKaXBLmpp0D9lp9dqt+O5OlU\nUp6StmfbXa/pJQEacV+M/AN5PhUAAAAAAAAAAACu5TGB1PWf/ObuLgAAAAAw4evvpZHjY7ThizP6\neVWGYXluZon2b8nU/i3nRmL0C/SSX4C3/IO85eXNCIxAdSkrKVNBbqkK8kpVWmwtd10vb6nXVQ3U\nc1gDWciiAgAAAAAAAACAKiLfh8rwmEDqsT1M9QkAAAB4sn4jG+qSLsFa+1maTh0tsLteUX6ZivLL\nlJNRXIO9A2BPVAt/XfXnJopo7OvurgAAAAAAAAAAgFqKfB8qw2MCqQAAAAA8X5PYAN3yUHMd3Z2n\njV+lKe1kkbu7BMCMRYrtEKQuAyLUqn2QxGDFAAAAAAAAAAAAqGYEUgEAAABUWauOQWrVsaXSThbp\nxP48Hd+fp+RD+SopKn/acADVo7A4Rxl5x5VfmCH/iDyVBZ6Sb1kThZyKV1peqHr06OHuLgIAAAAA\nAAAAAKCOc1sg9aqx0e7aNQAAAAAXaRTjp0Yxfuo2JEKSVFRQZvOntISAKmBm48aNeuedd5xqo6Ss\nSAVFZ1VYclbFpQXGFVbbftm0aVPFxMQoLi7uwt/nawAAAAAAAAAAAH9U1XzfBx98oJ07d5bf5lVX\nadCgQc50Cx7ObYHUuB6h7to1AAAAgGriF+AlvwAvd3cD8HgfTJ+vlMwkWSwWm7rVei7EfXHdFVJS\nUpSSkqLExETDsh49eig0NFRxcXGKi4tTaCijqgIAAAAAAAAAUJ9VJd+3Y8cOLf/hzXLXCQ0N1e1/\neV4hISHOdg0ezG2BVAAAAAAA6qslS5boscce06ZNm2zqZkFUq9Uqi8Vi+NuVzodUV6+2HVb1/Aiq\n7dq1U7NmzRhVFQAAAAAAAAAA2LBarZo5c2aF602ZMoUwaj1AIBUAAAAAgBoWFBSkefPm6dZbb9Xh\nw4fLXfd8+PTiv6XfR1S9uO4qlRlV9R//+IfL9wsAAAAAAAAAAGqHL7/8Uvv27St3ndatW2v06NE1\n1CO4E3NpAgAAAADgJo899php/Y9B0/JYLJYLf8y2v/hvV0pMTNTq1avVs2dPl7cNAAAAAAAAAAA8\nX0FBgV577bUK15s+fXq1DKwBz8MIqQAAAAAAuEnPnj01YsQIffnllzZ1Zy/K1PSoqudDqVu3bnVJ\newAAAAAAAKi7Nn1+yt1dAAC4yMKFC5WZmVnuOgMHDlSPHj1qqEdwNwKpAAAAAAC40fjx4w2BVOlc\ncLQ6nha21+b5/V38d1X07NmTUCoAAAAAAADKlbQj291dAAC4wOnTp/Xuu++Wu46Xl5cefvjhGuoR\nPIGXuzsAAAAAAEB9FhMToxEjRri7GxWOqnr+DwAAAAAAAAAAwCuvvKLi4uJy17ntttvUokWLGuoR\nPAGBVAAAAAAA3Gz8+PEKCQmxqVXH6KiOslgsF/6Uh9FRAQAAAAAAAACo+3bs2KH//ve/5a4TGhqq\nCRMm1FCP4Cl83N0BAAAAAADqu5iYGI0ZM0b/+te/bOpWq9WjgqnlIYwKAAAAAAAAM0Nvj3J3FwAA\nLjZz5swK15k4caJhMA7UfRYr8+0BAAAAAOB22dnZGjlypHJyctzdlUr5Y1iWMCoAAAAAAAAAAPXD\nihUr9L//+7/lrtO8eXN98skn8vb2rqFewVN4ubsDAAAAAADg3NQ1Y8aMMdQ98TnS2jRyKwAAAAAA\nAAAAcI2ioiK99tprFa43ffp0wqj1FIFUAAAAAAA8xB133KEmTZrY1CwWi0eGUs9jdFQAAAAAAAAA\nAOqHxYsXKy0trdx1EhIS1Ldv3//P3p2Haz3n/wN/ndNpP6eSQyUMiaEfwiRbiLFPJQqVkqWVmMYy\nDJHta2JCtoSKJhJCWcZSlmksIak0hFCKRFp00lF35/z++F76Ws/Wfd9nezyu61yd7l6v9+f5993z\nft9pSkRFo5AKAAAAFUROTk7079+/vGMU6ce3oyqjAgAAAABA9fD111/HuHHjipzJzMyMv/71r2lK\nREWkkAoAAAAVSMeOHSv0Lak/lFEBAAAAAIDq4/bbb4/8/PwiZ7p27RrbbbddmhJRESmkAgAAQAXz\na7ekVoQi6I9LsW5HBQAAAACA6mH+/Pnx9NNPFzlTv379GDBgQJoSUVEppAIAAEAF07Fjx9h5553L\nO8Yv/FCKVUYFAAAAAIDqY9iwYcXO9O/fPxo0aJCGNFRkCqkAAABQAV1wwQXlHQEAAAAAAKjmCAQn\nYQAAIABJREFUpk6dGvPmzStyZtttt41TTjklTYmoyBRSAQAAoAJq06ZN7LPPPuUdIwoLC6OwsHDT\n392OCgAAAAAA1cP69evjlltuKXbu/PPPjxo1aqQhERWdQioAAABUUP369fvV139cEE21jIyMyMjI\niAhlVAAAAAAAqE4mTJgQX375ZZEze++9dxxyyCFpSkRFp5AKAAAAFVSbNm2iQ4cOv3j9h4JoqrkZ\nFQAAAAAAqqeVK1fG6NGji53729/+loY0VBYKqQAAAFCBldctqYWFhWkrvgIAAAAAABXLrbfeGvn5\n+UXOdO7cOVq0aJGmRFQGCqkAAABQgW2zzTa/ektqOrkdFQAAAAAAqo8PPvggnnzyySJn6tWrF+ec\nc06aElFZKKQCAABABfdrt6Sm+vbSH59/0003xYYNG1L6PAAAAAAAoGL4+9//XuxMnz59YosttkhD\nGioThVQAAACo4LbZZpvo27fvL14vLCxMy/MnTJgQ3bt3j08//TQtzwMAAAAAAMrHtGnTYt68eUXO\nNG3aNHr06JGmRFQmCqkAAABQCfTo0SOys7N/8loqbkn9rZLrwoUL49RTT42JEycm/ZkAAAAAAED5\nW79+fYwYMaLYuQsvvDCysrLSkIjKRiEVAAAAKoGcnJzo3r37L15P9i2pRZVc169fH8OHD4+BAwfG\nihUrkvpcAAAAAACgfI0fPz6+/PLLImf23nvvaN++fZoSUdlkFKbr+/0AAACAzbJmzZro2LFj5OXl\n/eT1wsLCzb4ttbRnNGzYMK655po48MADN+u5AAAAAABA+Vu5cmV07Ngx8vPzi5x7+OGHo0WLFmlK\nRWXjhlQAAACoJHJycuKCCy5I+rllKbSuXr06zjvvvBg2bFh8//33Sc8EAAAAAACkzy233FJsGfWE\nE05QRqVICqkAAABQiXTs2DGaNm36k9cyMjIiWV+AcvDBB5dqftKkSdGtW7eYP39+Up4PAAAAAACk\n1wcffBBPPfVUkTP16tWLc889N02JqKwUUgEAAKCS6d+//y9eK+0Npz/48e2oM2fOjJtvvjkuu+yy\nqFOnTonPWLx4cZx++ukxduzYKCgoKFMOAAAAAACgfFx//fXFzvTr1y8aNGiQhjRUZgqpAAAAUMl0\n7Ngxdt5556Sc9WtF1hNOOCEmTpwYv//970t8TiKRiJEjR0afPn1i6dKlSckGAAAAAACk1jPPPBNz\n584tcqZp06bRrVu3NCWiMlNIBQAAgEroggsu2OwzCgsLN/0+c+bMn/zbtttuG+PGjYszzzyzVLev\nzp07N7p161bsV/sAAAAAAADlKz8/P2655ZZi5y688MLIyspKQyIqO4VUAAAAqITatGkT++yzz2ad\n8UPR9Odl1B9kZWXF2WefHaNHj46tttqqxOeuXbs2rrzyyrjoootizZo1m5URAAAAAABIjTFjxsTy\n5cuLnNl7772jffv2aUpEZaeQCgAAAJVUv379fvX1H998mgytW7eORx55JI455phS7b300kvRtWvX\nePPNN5OaBwAAAAAA2DxffPFF3HvvvcXOXXzxxWlIQ1WhkAoAAACVVJs2baJDhw6/eP2Hm09/TWFh\n4U8Kq791O+rPZWdnx7XXXhv/8z//E/Xq1Stxxm+++SbOPvvsuPnmm0u8AwAAAAAApNZNN91U7EyX\nLl2iZcuWaUhDVZFRmOxrUwAAAIC0+eKLL6JTp06/eL2wsLDIYmpEycuoP/fVV1/FZZddFu+8806p\n9nbYYYcYNmyYN68AAAAAAKAczZ49O/r06VPkTL169eLpp5+OnJycNKWiKnBDKgAAAFRi22yzza/e\nkvprynIz6q/Zeuut4+67747zzjsvsrKySry3cOHC6NmzZ9x///3h87EAAAAAAJB+GzdujGuvvbbY\nuYEDByqjUmoKqQAAAFDJ9evXL7Kzs3/y2s9vRy3JjamlkZGREaeddlrcf//9scMOO5R4L5FIxIgR\nI6Jfv37x1VdfJS0PAAAAAABQvEceeSQWLlxY5Ezz5s3j5JNPTlMiqhKFVAAAAKjkttlmm+jevfsv\nXv+tW0g353bUn2vZsmU8+OCD0a1bt1LtvfPOO3HyySfHs88+m7QsAAAAAADAb1uzZk2MHDmy2LnL\nLrssatSokYZEVDUKqQAAAFAF9OjRo8hbUn/4PZll1B/UrFkzLrzwwhg5cmRsueWWJd7Ly8uLIUOG\nxEUXXRRr1qxJei4AAAAAAOD/3H777fHdd98VOdOuXbto27ZtmhJR1SikAgAAQBWQk5NTqltSU6Ft\n27YxadKkOPjgg0u199JLL0XXrl3jtddeS1EyAAAAAACo3hYuXBiPPvpokTNZWVlx4YUXpikRVVFG\nYTr/ZwoAAABIqQ4dOsSXX375q/+WittRf8sTTzwRw4cPL/aT1j934oknxvnnnx916tRJUTIAAAAA\nAKh+zjrrrJgzZ06RMz179ozBgwenKRFVkRtSAQAAoAp56qmnfvX1dJZRIyI6deoUDz30ULRq1apU\ne4899liccsopxb4pBgAAAAAAlMzUqVOLfd+9UaNG0bdv3zQloqpyQyoAAABUUW3atImI9JdRf2zj\nxo1x7733xj333BMbN24s8V5mZmacdtppMWDAgMjKykphQgAAAAAAqLrWr18fnTp1iuXLlxc5N2TI\nkOjcuXOaUlFVuSEVAAAAqqjyLKL+oEaNGtGnT58YN25cNG/evMR7BQUFcd9990XPnj3j008/TWFC\nAAAAAACouu69995iy6gtW7aM448/Pk2JqMrckAoAAACkRX5+fowYMSImTZpUqr2aNWvG2WefHaee\nempkZvpsLQAAAAAAlMTy5cujY8eOsWHDhiLnxo0bF//v//2/NKWiKvO/OAAAAEBa1KlTJy655JIY\nOXJkbLnlliXe27BhQ9xyyy3Rp0+fWLp0aQoTAgAAAABA1TF8+PBiy6gdOnRQRiVpFFIBAACAtGrb\ntm1MmjQpjj766FLtzZ07N0455ZSYMmVKipIBAAAAAEDVMGfOnJg2bVqRM/Xq1YvBgwenKRHVQUZh\nYWFheYcAAAAAqqcXX3wxrr766sjLyyvV3oEHHhhDhw4t1U2rAAAAAABQHSQSiTjllFNi0aJFRc4N\nHjw4evbsmaZUVAduSAUAAADKzeGHHx6TJk2KAw44oFR7r732WnTt2jWeffbZFCUDAAAAAIDK6f77\n7y+2jNq8efPo3r17mhJRXbghFQAAAKgQHn300bj55psjPz+/VHuHHHJIXH755bHFFlukKBkAAAAA\nAFQOy5cvj+OPPz6+//77IudGjhwZbdu2TVMqqgs3pAIAAAAVQpcuXWLixImx5557lmpv+vTp0aVL\nl/j3v/+domQAAAAAAFA5XH/99cWWUdu3b6+MSkq4IRUAAACoUAoKCuKf//xnjBo1KhKJRKl2jzzy\nyLjkkkuiYcOGKUoHAAAAAAAV08yZM2PAgAFFztSsWTMef/zxaNq0aZpSUZ24IRUAAACoUDIzM+P0\n00+P+++/P1q2bFmq3alTp0aXLl3i1VdfTVE6AAAAAACoeNavXx/XXHNNsXNnnHGGMiop44ZUAAAA\noMJKJBJx5513xj//+c8o7VsYxx13XFx00UWRk5OTonQAAAAAAFAxjB49OkaNGlXkTPPmzeORRx6J\nWrVqpSkV1Y1CKgAAAFDhzZs3L4YMGRJLliwp1V7jxo3jmmuuif322y9FyQAAAAAAoHx9+eWXccIJ\nJ8SGDRuKnBs1alS0adMmTamojjLLOwAAAABAcXbfffd46KGHonv37qXaW7FiRZxzzjlx9dVXx9q1\na1OUDgAAAAAAys91111XbBn10EMPVUYl5dyQCgAAAFQqs2fPjssvvzyWLl1aqr3c3Ny46qqr3JYK\nAAAAAECVMX369Dj//POLnKlZs2Y8/vjj0bRp0zSlorpSSAUAAAAqnfz8/BgxYkRMmjSp1LsdOnSI\nCy64IHJyclKQDAAAAAAA0mP9+vVxwgknxLJly4qcGzhwYJx11llpSkV1llneAQAAAABKq06dOnHJ\nJZfEqFGjIjc3t1S7Tz31VHTp0iX+/e9/pygdAAAAAACk3pgxY4otozZv3jx69+6dpkRUd25IBQAA\nACq1tWvXxs033xyTJ08u9e7RRx8df/3rX6Nhw4YpSAYAAAAAAKmxZMmS6Nq1ayQSiSLnRo0aFW3a\ntElTKqo7N6QCAAAAlVr9+vVjyJAhcccdd0Tjxo1Ltfvcc89Fly5dYtq0aSlKBwAAAAAAyXfttdcW\nW0Y9/PDDlVFJKzekAgAAAFXGmjVrYvjw4fH000+XeveQQw6Jyy+/PLbYYosUJAMAAAAAgOR44YUX\n4uKLLy5ypnbt2jFlypTIzc1NUypQSAUAAACqoFdffTWGDh0aq1atKtVegwYN4qKLLopjjz02RckA\nAAAAAKDsvvvuu+jcuXOsWLGiyLlzzz03evfunaZU8L8UUgEAAIAqafXq1fGPf/wjnn322VLvHnjg\ngXH55ZfHVlttlYJkAAAAAABQNtdff3088sgjRc787ne/i4cffjhq1KiRplTwvxRSAQAAgCrt1Vdf\njauuuqrYT4v/XHZ2dpx//vnRqVOnFCUDAAAAAICSmzdvXpx++unFzo0dOzb23HPPNCSCn1JIBQAA\nAKq8NWvWxM033xxPPPFEqXfbtGkTQ4cOjWbNmqUgGQAAAAAAFC+RSMRJJ50UixcvLnKuc+fOMWTI\nkDSlgp9SSAUAAACqjTfeeCOuvvrqWLZsWan26tSpEwMGDIgePXpEZmZmitIBAAAAAMCvGzNmTNx5\n551FzjRs2DAmT54cOTk5aUoFP6WQCgAAAFQr69atixEjRsSjjz5a6t1ddtklrr766mjZsmUKkgEA\nAAAAwC998cUXceKJJ0YikShy7sorr4wOHTqkKRX8kkIqAAAAUC3NnDkzrrrqqli6dGmp9mrUqBG9\nevWKfv36Ra1atVKUDgAAAAAA/lffvn3jnXfeKXJmjz32iHvvvTdNieDX+Y45AAAAoFpq06ZNPPLI\nI9GtW7fIyMgo8d7GjRvjvvvui5NOOqnYNwABAAAAAGBzTJkypdj3omvUqBFDhw5NUyL4bW5IBQAA\nAKq9efPmxZAhQ2LJkiWl3u3cuXMMHjw4srOzU5AMAAAAAIDqatWqVdG5c+fIy8srcu6ss86KgQMH\npikV/DY3pAIAAADV3u677x4PPfRQnHbaaZGZWbq3SyZPnhxdu3aNF198MUXpAAAAAACojm644YZi\ny6jNmjWLPn36pCkRFM0NqQAAAAA/8sEHH8TQoUNjwYIFpd5t165dDBkyJHJzc1OQDAAAAACA6mLG\njBkxaNCgYufuvvvu2GeffdKQCIqnkAoAAADwMxs3bozx48fH3XffHevXry/Vbv369eOcc86Jk046\nKTIyMlKUEAAAAACAqio/Pz9OOOGE+Prrr4uc69y5cwwZMiRNqaB4CqkAAAAAv2HJkiVx5ZVXxuzZ\ns0u9u9tuu8XQoUOjZcuWKUgGAAAAAEBVddNNN8WECROKnGncuHE89thjkZ2dnaZUUDyFVAAAAIBi\nTJ48OUaMGBF5eXml2svMzIwePXpE//79o27duilKBwAAAABAVTF//vw47bTToqCgoMi5YcOGxRFH\nHJGmVFAyCqkAAAAAJbBixYq4/vrr44UXXij17tZbbx2XXnpptGvXLgXJAAAAAACoChKJRHTr1i0W\nLlxY5Fy7du1ixIgRaUoFJaeQCgAAAFAKr7zySlx77bWxfPnyUu8edthhcfHFF0dubm4KkgEAAAAA\nUJmNGjUqRo8eXeRM3bp1Y/LkybHlllumKRWUXGZ5BwAAAACoTNq1axePPvpodO3atdS7L730Upx4\n4okxceLEYr9uCQAAAACA6uPDDz+Me++9t9i5P//5z8qoVFhuSAUAAAAoo3fffTeuuOKKWLx4cal3\nd9lllxg6dGj8/ve/T0EyAAAAAAAqi0QiEd26dYuFCxcWOde6desYM2ZMmlJB6SmkAgAAAGyGDRs2\nxLhx42LMmDGxYcOGUu1mZmZGt27dYuDAgVG3bt0UJQQAAAAAoCIbNWpUjB49usiZWrVqxaOPPhrN\nmjVLUyooPYVUAAAAgCT47LPP4rrrrouZM2eWenfrrbeO888/P4444ogUJAMAAAAAoKL68MMPo1ev\nXrFx48Yi5wYPHhw9e/ZMUyooG4VUAAAAgCR65pln4sYbb4xVq1aVerdNmzZxySWXxA477JCCZAAA\nAAAAVCSJRCK6desWCxcuLHKuVatWMW7cuMjIyEhTMigbhVQAAACAJPv222/j1ltvjcmTJ5d6Nysr\nK3r27Bl9+vSJOnXqpCAdAAAAAAAVwahRo2L06NFFzmRlZcWkSZNi2223TVMqKDuFVAAAAIAUeffd\nd+Oqq64q9tPtv6ZJkyZx/vnnxx//+McUJAMAAAAAoDx9+OGH0atXr9i4cWORc+ecc06cccYZaUoF\nm0chFQAAACCFEolE3H///XHPPffE999/X+r9Nm3axJAhQ3z6HQAAAACgikgkEtGtW7diLzPYeeed\n44EHHojMzMw0JYPNo5AKAAAAkAZLliyJYcOGxYwZM0q9m5WVFb169Yo+ffpE7dq1U5AOAAAAAIB0\nGTVqVIwePbrImRo1asTEiRNjxx13TFMq2HwKqQAAAABpNHXq1Bg+fHh88803pd5t2rRpXHjhhdG+\nffsUJAMAAAAAINXmz58fvXv3jo0bNxY5N2DAgOjTp0+aUkFyKKQCAAAApFleXl6MGjUqHn744Sgo\nKCj1/r777ht/+9vfYvvtt09BOgAAAAAAUmHdunXRrVu3+Pzzz4uca9WqVfzzn/9MUypIHoVUAAAA\ngHLy0Ucfxd///veYO3duqXezsrKiR48e0bdv36hbt24K0gEAAAAAkEzXXnttTJ48uciZrKysmDhx\nYuywww5pSgXJo5AKAAAAUM6efvrpuOWWW2LFihWl3s3NzY0///nPceyxx6YgGQAAAAAAyTBjxowY\nNGhQsXODBw+Onj17piERJJ9CKgAAAEAFkJeXF6NGjYqHH344CgoKSr2/++67x+WXXx477bRTCtIB\nAAAAAFBWK1eujJNOOilWrVpV5Nyee+4ZY8aMiYyMjDQlg+RSSAUAAACoQD766KP4+9//HnPnzi31\nbmZmZpx44okxaNCgyM7OTkE6AAAAAABKa9CgQTFjxowiZ2rVqhWPPfZYNG3aNE2pIPkyyzsAAAAA\nAP9n5513jrFjx8aVV14ZW2yxRal2CwoKYtKkSXH88cfHY489Fj6HDAAAAABQvh5//PFiy6gREeef\nf74yKpWeG1IBAAAAKqi8vLy444474pFHHinT/i677BKXXHJJ7LnnnklOBgAAAABAcZYsWRLdunWL\n/Pz8Iuf233//uP3229OUClJHIRUAAACggvv444/j+uuvj1mzZpVpv3379nHuuefG7373uyQnAwAA\nAADgt5x++ukxb968ImdycnLiscceK/U3ZkFFpJAKAAAAUEm89NJLMWLEiPj8889LvZuZmRnHH398\nDBgwILbccssUpAMAAAAA4Ae333573HfffcXO3XTTTXHIIYekIRGknkIqAAAAQCWyfv36mDBhQowd\nOza+++67Uu/XqVMnTj311DjttNOifv36KUgIAAAAAFC9zZw5MwYMGFDsXKdOneKKK65IQyJID4VU\nAAAAgEpoxYoVcdttt8WTTz5Zpv1GjRpFnz59omvXrpGVlZXkdAAAAAAA1dM333wTJ598cqxevbrI\nuebNm8fEiROjbt26aUoGqaeQCgAAAFCJffjhh3HdddfFvHnzyrTfvHnzOOecc+LII4+MjIyMJKcD\nAAAAAKhe+vXrF7NmzSpyJiMjI8aPHx+77rprmlJBeiikAgAAAFQBzz33XNx6662xbNmyMu3vsssu\nccEFF8Qf/vCHJCcDAAAAAKgeRo0aFaNHjy52rm/fvtG/f/80JIL0UkgFAAAAqCK+//77GD9+fIwb\nNy7WrVtXpjPatWsXgwYNipYtWyY5HQAAAABA1TVz5swYMGBAsXOtW7eOMWPGpCERpJ9CKgAAAEAV\ns2rVqrj77rvjsccei0QiUer9jIyM+NOf/hQDBgyIpk2bpiAhAAAAAEDVsWrVqujSpUusXr26yLmG\nDRvGww8/HFtuuWWakkF6KaQCAAAAVFFffPFF3HbbbTF16tQy7desWTO6desWZ5xxRjRo0CDJ6QAA\nAAAAKr/CwsIYOHBgzJw5s9jZUaNGRZs2bdKQCsqHQioAAABAFffBBx/EjTfeGLNmzSrTfk5OTpx5\n5plx8sknR+3atZOcDgAAAACg8rrnnnvirrvuKnaud+/ece6556YhEZQfhVQAAACAauK1116LW2+9\nNRYsWFCm/SZNmsTAgQPjuOOOi8zMzCSnAwAAAACoXGbPnh19+/aN4ip4rVq1irFjx0ZWVlaakkH5\nUEgFAAAAqEYKCwvj6aefjlGjRsWXX35ZpjNatmwZ5513Xhx44IFJTgcAAAAAUDmsWrUqTj755Fix\nYkWRc9nZ2fHwww/H1ltvnaZkUH4UUgEAAACqoQ0bNsRDDz0UY8eOjW+//bZMZ7Ru3TouuOCCaNWq\nVZLTAQAAAABUXAUFBdGvX7+YPXt2sbO33nqrD/dTbSikAgAAAFRjeXl5MXbs2Jg4cWKsX7++TGcc\neeSRce6558Y222yT5HQAAAAAABXPTTfdFBMmTCh27tRTT42//OUvaUgEFYNCKgAAAADx9ddfx8iR\nI+Opp56KsrxdlJWVFV26dIm+fftGo0aNUpAQAAAAAKD8Pf/883HppZcWO9eqVasYO3ZsZGVlpSEV\nVAwKqQAAAABs8umnn8Ytt9wSr7zySpn269WrF6eddlr07Nkz6tSpk+R0AAAAAADlZ8GCBdGrV6/Y\nsGFDkXP16tWLSZMmxdZbb52mZFAxKKQCAAAA8AuzZ8+OG2+8Md5///0y7W+xxRbRq1evOOmkk6Ju\n3bpJTgcAAAAAkF6rV6+OHj16xLJly4qdHT58eLRv3z4NqaBiUUgFAAAA4DdNmzYt7rjjjli8eHGZ\n9hs2bBinnnpqnHLKKVG/fv0kpwMAAAAASL2CgoLo169fzJ49u9jZnj17xuDBg9OQCioehVQAAAAA\nipRIJGLy5Mlx9913x4oVK8p0Rk5OTvTo0SO6d+8e2dnZSU4IAAAAAJA6I0aMiPvvv7/Yub322ivu\nvvvuyMzMTEMqqHgUUgEAAAAokXXr1sX48eNj/PjxsW7dujKdUb9+/ejWrVv07NkzcnJykpwQAAAA\nACC5Xn755bjwwguLnWvSpElMmDAhGjZsmIZUUDEppAIAAABQKitXroy77747Hn/88UgkEmU6o27d\nunHyySfHaaed5g1aAAAAAKBCWrBgQfTu3Tu+//77Iudq164d48aNi5YtW6YpGVRMCqkAAAAAlMmS\nJUvi9ttvj2nTppX5jDp16kTXrl2jd+/escUWWyQxHQAAAABA2a1evTp69OgRy5YtK3Z2+PDh0b59\n+zSkgopNIRUAAACAzfLee+/FjTfeGHPmzCnzGbVq1YoTTzwxTj/99MjNzU1iOgAAAACA0kkkEtG3\nb9949913i53t2bNnDB48OA2poOJTSAUAAAAgKV555ZW4/fbbY8GCBWU+o2bNmnH88cfHGWecEU2a\nNEliOgAAAACAkhkyZEg8++yzxc7ttddecffdd0dmZmYaUkHFp5AKAAAAQNIUFBTEiy++GKNHj96s\nYmpWVlZ06NAh+vTpE02bNk1iQgAAAACA3zZ69OgYNWpUsXNNmjSJCRMmRMOGDdOQCioHhVQAAAAA\nUuLll1+O0aNHx/z588t8Ro0aNeLYY4+Nvn37RvPmzZOYDgAAAADgp1544YW4+OKLi52rWbNmjB8/\nPlq2bJmGVFB5KKQCAAAAkFKvvfZajB49OubOnVvmMzIzM+Poo4+Ofv36xXbbbZfEdAAAAAAAEXPn\nzo3+/fvHhg0bip297rrr4qijjkpDKqhcFFIBAAAASIu33norRo8eHW+//XaZz8jIyIgjjjgi+vfv\nHzvssEMS0wEAAAAA1dUXX3wRp556aqxZs6bY2dNPPz0GDRqUhlRQ+SikAgAAAJBW7777btx1110x\nY8aMzTrnsMMOi/79+/taLAAAAACgzPLy8qJXr16xePHiYmcPP/zwuP766yMjIyMNyaDyUUgFAAAA\noFzMnz8/7rrrrvjPf/6zWecccsgh0a9fv9h1112TlAwAAAAAqA4SiUScffbZMWvWrGJnd9tttxgz\nZkzUqlUrDcmgclJIBQAAAKBcLViwIO6555544YUXNuucAw88MAYMGBCtWrVKUjIAAAAAoCobMmRI\nPPvss8XONWvWLMaPHx+NGjVKQyqovBRSAQAAAKgQFi5cGKNHj47nn38+CgoKynzOXnvtFT169Ij2\n7dtHZmZmEhMCAAAAAFXFnXfeGWPGjCl2rn79+jF+/PjYfvvt05AKKjeFVAAAAAAqlM8//zxGjx4d\n//rXv2Ljxo1lPqdZs2ZxyimnROfOnSM7OzuJCQEAAACAymzSpEkxbNiwYueysrLijjvuiD/84Q9p\nSAWVn0IqAAAAABXSl19+GWPHjo0nnngiEolEmc+pW7dudOrUKbp37x7bbrttEhMCAAAAAJXNs88+\nG0OGDCnR7LXXXhvHHHNMihNB1aGQCgAAAECFtnz58rjvvvvi8ccfj++//36zzjr44IOjR48ese++\n+yYpHQAAAABQWcyYMSPOO++8KCgoKHb2zDPPjLPPPjsNqaDqUEgFAAAAoFJYuXJljBs3LiZNmhT5\n+fmbdVbLli2je/fuceyxx0atWrWSlBAAAAAAqKjmzJkTAwcOjPXr1xc7e/jhh8cNN9yQhlRQtSik\nAgAAAFCprF69Oh544IF46KGHYu3atZt1VqNGjaJr167RtWvXyM3NTVJCAAAAAKAi+fBR6DuLAAAa\nH0lEQVTDD6NPnz7x3XffFTu7xx57xF133eWD7FAGCqkAAAAAVEp5eXkxceLEmDBhQnz77bebdVZW\nVlYceeSRceqpp8auu+6apIQAAAAAQHlbsmRJ9O7dO1avXl3s7Pbbbx/jxo2LnJycNCSDqkchFQAA\nAIBKbd26dfHQQw/F/fffH6tWrdrs8/baa6/o0aNHtG/fPjIzM5OQEAAAAAAoD19//XWcfvrpsWzZ\nsmJnmzRpEvfdd19stdVWaUgGVZNCKgAAAABVwvfffx/PPPNMTJw4MRYsWLDZ5zVr1ixOOeWU6Ny5\nc2RnZychIQAAAACQLmvWrInevXvHZ599Vuxsw4YNY9y4cbHtttumIRlUXQqpAAAAAFQ5M2fOjAcf\nfDCmT58em/v2V926daNjx47RvXv32G677ZKUEAAAAABIlW+//TYGDBgQH374YbGz9erVi9GjR8cu\nu+yShmRQtSmkAgAAAFBlLV26NCZOnBhTpkyJvLy8zT6vXbt20aNHj2jbtm0S0gEAAAAAyfbtt99G\nnz594pNPPil2tlatWnHnnXdG69at05AMqj6FVAAAAACqvHXr1sWTTz4ZEydOLNFXdBWnZcuW0a1b\ntzjuuOOiVq1aSUgIAAAAAGyu0pRRMzMz49Zbb439998/DcmgelBIBQAAAKDaKCwsjNdffz0efPDB\neP311zf7vEaNGkWXLl3ipJNOitzc3CQkBAAAAADKojRl1IiIa6+9No455pgUp4LqRSEVAAAAgGrp\ns88+iwkTJsRTTz0V+fn5m3VWVlZWtGvXLjp27BgHHXRQZGVlJSklAAAAAFCcVatWRb9+/UpcRr3k\nkkuia9euKU4F1Y9CKgAAAADVWl5eXkyePDkeeuihWLp06Waf17hx4zjuuOOiU6dO0aJFiyQkBAAA\nAAB+y6pVq+Kss86KRYsWlWi+b9++0b9//xSngupJIRUAAAAAIqKgoCCmT58eDz74YLz99ttJObNV\nq1bRqVOnOOaYYyI7OzspZwIAAAAA/6u0ZdSePXvG4MGDU5wKqi+FVAAAAAD4mU8++SQeeOCBeOaZ\nZ2L9+vWbfV6tWrXisMMOi44dO0bbtm0jMzMzCSkBAAAAoPpSRoWKRyEVAAAAAH7D6tWr49FHH41H\nHnkkvv7666Sc2aRJk+jQoUN07Ngxtt1226ScCQAAAADVydKlS2PgwIGxZMmSEs336dMnBgwYkOJU\ngEIqAAAAABQjkUjEiy++GBMmTIh58+Yl7dy99947jj/++DjiiCOiTp06STsXAAAAAKqqjz/+OPr3\n7x+rVq0q0fyf//zn6NWrV4pTAREKqQAAAABQKh988EGMHz8+pk2bFolEIiln1q1bN4488sjo1KlT\n7LXXXkk5EwAAAACqmrfffjv+8pe/xHfffVeieWVUSC+FVAAAAAAogxUrVsTDDz8cjz76aKxcuTJp\n52633XbRqVOn+NOf/hRbb7110s4FAAAAgMrs5ZdfjksuuaTEHxJXRoX0U0gFAAAAgM2QSCTi5Zdf\njieeeCJef/31SNbbbRkZGbH//vtHp06don379lGzZs2knAsAAAAAlc2UKVPimmuuKfH8RRddFKec\nckoKEwG/RiEVAAAAAJLkq6++iqeeeiqeeOKJWLJkSdLOzcnJiWOOOSaOP/742HXXXZN2LgAAAABU\ndCNHjoyxY8eWeF4ZFcqPQioAAAAApMCsWbPiiSeeiGnTpkV+fn7Szm3ZsmV06tQpjjvuuGjUqFHS\nzgUAAACAiqSgoCCuuOKKePbZZ0s0n5GREVdffXUce+yxKU4G/BaFVAAAAABIoe+++y6eeeaZePLJ\nJ2PevHlJPbtNmzZx1FFHxRFHHBENGjRI6tkAAAAAUF7y8vLiwgsvjJkzZ5ZovlatWvGPf/wjDjro\noBQnA4qikAoAAAAAabJw4cKYMmVKPP3007FixYqknVujRo1o27ZtHHXUUXHYYYdFdnZ20s4GAAAA\ngHRauHBhDB48OJYsWVKi+ezs7Bg5cmS0atUqxcmA4iikAgAAAECabdy4MV555ZV44okn4pVXXomN\nGzcm7eysrKw44IAD4qijjor27dtH3bp1k3Y2AAAAAKTS66+/HhdddFHk5+eXaH7rrbeOkSNHxg47\n7JDiZEBJKKQCAAAAQDlasWJFPP300zFlypRYuHBhUs+uVatWHHTQQXH00UfHwQcfHLVr107q+QAA\nAACQLPfdd1/ccccdUdI62+9+97u46667Ijc3N8XJgJJSSAUAAACACuLdd9+NKVOmxNSpU2Pt2rVJ\nPbtOnTpxyCGHxFFHHRUHHXRQ1KxZM6nnAwAAAEBZrF+/Pi677LJ46aWXSryzxx57xG233RbZ2dkp\nTAaUlkIqAAAAAFQw+fn5MW3atHjiiSdi1qxZST+/fv36ceihh8ZRRx0V+++/f2RlZSX9GQAAAABQ\nnOXLl8e5554bH330UYl3DjzwwBg+fHjUqlUrhcmAslBIBQAAAIAKbMmSJfHkk0/Gk08+GV999VXS\nz8/Ozo527dpF+/bt46CDDoq6desm/RkAAAAA8HPvv/9+nHvuubFq1aoS73Tq1CmGDBkSmZmZKUwG\nlJVCKgAAAABUAgUFBfHGG2/ElClT4uWXX45EIpH0Z9SqVSvatm0b7du3j/bt20ejRo2S/gwAAAAA\neOCBB+K2224r8XtcmZmZce6550avXr1SnAzYHAqpAAAAAFDJrFmzJp5++ul44YUX4p133knZc1q3\nbh2HHXZYHH744bHNNtuk7DkAAAAAVA/ffvttXHrppTFjxowS72RnZ8c//vGP2HfffVOYDEgGhVQA\nAAAAqMRWrFgRU6dOjalTp8bs2bNT9pyWLVtuujl11113TdlzAAAAAKia3n333bjoooti+fLlJd5p\n0aJF3HLLLdGsWbMUJgOSRSEVAAAAAKqI5cuXx7Rp02Lq1KkxZ86clD2nadOmm8qpe++9d9SoUSNl\nzwIAAACgcisoKIgxY8bEPffcEwUFBSXea9euXQwbNizq1KmTwnRAMimkAgAAAEAV9PXXX2+6OfXd\nd99N2XMaNmwYBx98cLRv3z4OOOCAqF27dsqeBQAAAEDl8s0338TFF19c6m/2GTBgQPTp0ydFqYBU\nUUgFAAAAgCruyy+/jOeffz5eeOGF+O9//5uy59SuXTv23Xff2H///aNt27bRokWLlD0LAAAAgIrt\ntddeiyuuuCJWrVpV4p369evHddddFwcddFAKkwGpopAKAAAAANXIsmXL4vnnn4+pU6fGe++9l9Jn\n5ebmxn777Rdt27aNAw44IBo3bpzS5wEAAABQ/lauXBnDhw+P5557rlR7u+66a9xwww2xzTbbpCgZ\nkGoKqQAAAABQTX311Vfx8ssvx/Tp02PmzJmRSCRS+rwdd9wx9ttvv9hvv/3iD3/4Q9SrVy+lzwMA\nAAAgfQoLC2Py5Mlx6623xpo1a0q8l5GREb17944BAwZEVlZWChMCqaaQCgAAAADEunXr4rXXXovp\n06fHq6++WqqvUiuLGjVqxO677x5t27aN/fbbL3bffXf/4QAAAABQSS1cuDCGDh0a//3vf0u1l5ub\nG8OGDYu99torRcmAdFJIBQAAAAB+oqCgIObOnRvTp0+P6dOnx8KFC1P+zHr16sU+++wT++23X7Rt\n2zZ22mmnlD8TAAAAgM2zfv36GDNmTIwbN67U377Trl27uPrqq6NBgwYpSgekm0IqAAAAAFCkzz//\nPF566aWYPn16zJkzJzZu3JjyZ+bm5kbbtm2jbdu2sf/++0dubm7KnwkAAABAyc2aNSuGDh0aS5cu\nLdVe7dq14/zzz48uXbqkKBlQXhRSAQAAAIASy8vLi//85z8xffr0eP311yMvLy8tz912221jzz33\njNatW0fr1q2jRYsWkZmZmZZnAwAAAPB/Fi1aFLfddlu8/PLLpd5t0aJF3HDDDbHDDjukIBlQ3hRS\nAQAAAIAye+ONN2L69OkxY8aMWLRoUdqeW7du3WjduvWmkuoee+wR9erVS9vzAQAAAKqbb775Ju66\n66547LHHyrR/xhlnxDnnnJPkVEBFopAKAAAAACTFsmXLYsaMGfHmm2/Gm2++GStXrkzbszMyMqJl\ny5abblDdc889o3nz5ml7PgAAAEBVtXbt2hg3blxMmDAh8vPzS72/++67x9ChQ2PHHXdMQTqgIlFI\nBQAAAACSrrCwMBYsWBBvvPFGvPnmmzFr1qwy/YfF5sjNzY0999xz0y2qu+22W2RlZaU1AwAAAEBl\nlUgk4pFHHokxY8bEqlWrSr2fnZ0dgwYNii5dukRGRkYKEgIVjUIqAAAAAJByiUQi5s6dG2+88Ua8\n8cYb8d5770VBQUFaM9SsWTN23nnn2G233Tb97LTTTkqqAAAAAD9SWFgYzz33XNx5553x+eefl+mM\nI444Iv76179G48aNk5wOqMgUUgEAAACAtFu7dm289dZb8eabb8abb74ZCxcuLJcctWrV+klJtVWr\nVtGiRYuoUaNGueQBAAAAKC+JRCL+9a9/xfjx4+PTTz8t0xlbb711XHrppdGuXbskpwMqA4VUAAAA\nAKDcff3115tuT33zzTfjm2++KbcstWrVil122eUnJdUdd9xRSRUAAACokvLy8mLSpEkxceLEWL58\neZnOyMzMjB49ekT//v2jbt26SU4IVBYKqQAAAABAhbNo0aKYM2dOzJ49O+bMmROLFi0q1zy1a9fe\nVFJt1apV7LrrrtGiRYvIzMws11wAAAAAZfX111/H/fffH48//nh89913ZT7n0EMPjUGDBsWOO+6Y\nxHRAZaSQCgAAAABUeKtXr4533nlnU0n1/fffj0QiUa6Z6tSpE7vsssumgmqrVq1ihx12UFIFAAAA\nKrRPPvkk7r333pg6depmvb+y++67x4UXXhi77757EtMBlZlCKgAAAABQ6axfvz7ee++9mD17dsye\nPTvmzp0b3377bXnHitq1a8eOO+4YLVq0iBYtWsROO+0UO+20UzRr1iwyMjLKOx4AAABQTeXn58e0\nadNi8uTJMXv27M06q0WLFjFo0KA45JBDkpQOqCoUUgEAAACAKuGTTz7ZdIPqnDlzYsmSJeUdaZM6\nder8oqTaokWLaNq0aXlHAwAAAKqwBQsWxKRJk+LZZ5+NvLy8zTqrSZMm0b9//+jQoYNviAF+lUIq\nAAAAAFAlrVy5MmbNmhVz5syJOXPmxAcffLBZX0OXCvXr148dd9zxJyXVnXbaKbbaaqvyjgYAAABU\nUmvXro1nnnkmJk+eHPPnz9/s83JycuLMM8+Mk08+OWrXrp2EhEBVpZAKAAAAAFQL69evjw8//DDe\nf//9TT+ffPJJbNy4sbyj/UJ2dvYvSqotWrSILbfcsryjAQAAABXU7NmzY/LkyTFt2rTIz8/f7PO2\n2mqr6N69e3Tt2jXq1auXhIRAVaeQCgAAAABUWz+UVOfPn/+TkmpFu0n1B9nZ2bHddtvFdtttF9tv\nv31su+22m/7euHHj8o4HAAAApNm8efPihRdeiBdffDE+//zzpJy54447Rq9eveK4446LrKyspJwJ\nVA8KqQAAAAAAP7Jhw4ZNN6n+UFT9+OOPK2xJ9Qf16tXbVE79oai6/fbbx3bbbRe5ubnlHQ8AAABI\ngsLCwpg9e3a88MIL8dJLL8WyZcuSdvZee+0Vp512WhxyyCFJOxOoXhRSAQAAAACKsWHDhvjoo482\n3aI6f/78WLBgQYUvqf6gTp06P7lN9cfF1SZNmkRGRkZ5RwQAAAB+w8aNG+Ptt9+OF198MV566aX4\n5ptvknZ2RkZGHHrooXHmmWdGq1atknYuUD0ppAIAAAAAlMGGDRtiwYIF8d5771XKkuoPatasGU2a\nNImmTZtGs2bNolmzZr/43dfzAQAAQHolEol444034sUXX4x///vfsWrVqqSen5ubG8cff3yccMIJ\n0bRp06SeDVRfCqkAAAAAAEmSSCTis88+i08++eQnP5999lmlK6r+WG5ubjRt2nRTUfXnf+bk5JR3\nRAAAAKjUCgoK4oMPPoi33norZs6cGe+8806sW7cuqc/IzMyMAw88ME444YRo165d1KhRI6nnAyik\nAgAAAACkWCKRiMWLF8fHH38cn3766aY/Fy1aVKmLqj+oX7/+T0qqPy+sbrXVVpGRkVHeMQEAAKDC\nKCwsjAULFsTMmTPjrbfeilmzZkVeXl5KntW0adPo3LlzdO7cOXJzc1PyDIAIhVQAAAAAgHKzcePG\nXy2qLly4sEoUVX9Qo0aNaNy4ceTm5saWW24Zubm5v/qz5ZZbRs2aNcs7LgAAACRdXl5ezJkzJ959\n992YN29e/Pe//401a9ak7HlZWVlx8MEHxwknnBAHHHCAD4oCaaGQCgAAAABQwfxQVP3kk09+8rNo\n0aLYsGFDecdLqYYNG/5mafXHr9evX7+8owIAAMCvSiQS8eGHH24qn86bNy8WL16c8ufWqFEj9t13\n3zjiiCPi8MMPjwYNGqT8mQA/ppAKAAAAAFBJFBQUxJdffhmLFy+OJUuW/OLP77//vrwjpk2dOnWK\nLa3m5uZGo0aN3AIDAABASi1duvQn5dP58+fH+vXr0/LsrKys2HfffeOPf/yjEipQ7hRSAQAAAACq\ngMLCwli+fHksXrx408+SJUs2FVbXrl1b3hHLRWZmZuTk5ESDBg2iYcOG0aBBg5/8/luv5eTkRI0a\nNco7PgAAABVEIpGIJUuWxMKFC3/ys2jRov/f3t31NBFtYQBeQMuUTjFAEFATE8EYgsYbg5iYeOv/\n/wdK/CCIQKEtLf06N6eTlg89nlEH8HmSnb323sN0tXBD+lLi9PT0r/ZSKpViZ2cnC6HWarW/+vgA\n1xFIBQAAAAD4BxweHmbh1PGw6u7ubpycnBTd3o2Upuml0Op1gdY0TaNWq0WaprGwsFB06wAAAPyf\n9vb2Ym9vLz5+/JgFTj98+BC7u7tFtxZv376N9+/fx7t374RQgRtJIBUAAAAA4B/Xbrfj06dP2Ztu\n+/v78eXLl2y9t7dXdIu3TpIkWUD1qnl+fj6q1WpUq9VI0zTSNL2yrlQqRT8VAACAO6Pdbsfnz58n\nft/9+vVrVn/79i36/X7RbWY2Njbi9evXsbOzE69evYq5ubmiWwL4IYFUAAAAAAB+avzNuqtGo9Eo\nusU7axRkTdM09vf3Y25uLqrVajZXKpWJebyem5vLRpqmUSqVIkmSKJfLMTs7G7Ozs1ldLpcFYAEA\ngFtlOBxGvV6Pw8PDODw8jKOjo/j+/XscHR1le+P7Z2dnRbf8Q6urq7G9vR07Ozvx5s2bWFxcLLol\ngF8ikAoAAAAAQG637VNm+LFKpXJtcDVJkiiVSlEulyfCrFetr6uvWpfL5SiVShP7o8dJ07TolwQA\nAPiN2u12dDqdaLfbE3Wn04l6vR6NRiMbp6en2dxsNuPk5CTbu+1/HJmmaWxvb2djfX296JYAchFI\nBQAAAADgjxsMBtkn0ozGwcFBHBwcZPVov9lsFt0uN1ilUrkUZB0fSZLE1NRUTE9Px8zMTExPT0/U\nMzMzMTU1de3ZaO/iWalUyu47fjZ+r6vu/SvXTk1N3bqRJEnRPxIAAHdSp9OJ4XAYg8EgBoNBVo/v\n/ejsV6/v9XqXRrfbnZgv7p2fn0e3283q8/Pz6PV6E3Wr1boyePqv2tzcjBcvXsTm5mZsbW3Fs2fP\nim4J4LcSSAUAAAAA4EZpt9sTAdXxwOp4iPXo6Ch6vV7R7QIAAMAljx49iufPn2dja2srZmdni24L\n4I8SSAUAAAAA4FYaDodRr9cnQqoXP211dHbb/40jAAAAN9fCwkJsbW1l4dOXL1/GvXv3im4L4K8T\nSAUAAAAA4M7r9XpxfHz801Gv17P67Oys6LYBAAC4QarVaqyvr8fGxsbEvLKyUnRrADeCQCoAAAAA\nAFxjf38/C6oeHR1NBFZH+ycnJ9FsNqPZbEaj0Yh2u1102wAAAOSwvLwcDx8+jMePH8f6+no8ffo0\nnjx5Eg8ePCi6NYAbTSAVAAAAAAB+s1FItdFoXDm3Wq1oNBrRarWi1Wple6Nga6vVinq9XvTTAAAA\nuHNqtVqsra3F2tparK6uXqpXVlaiVCoV3SbArSSQCgAAAAAAN9jx8XEWXL1//36cnZ1dGq1W66fr\ndrsdnU4nut1unJ+fT4xutxvNZrPopwoAAPDLSqVSLCwsxNLSUiwtLcXi4uLEvLS0lJ0vLy/H7Oxs\n0S0D3FkCqQAAAAAAwIRms3ltcHU0/6gerXu9Xva1o/ri9f1+PwvKjsbFa9vtdtEvCQAA8JfUarVY\nWFjIxuLi4qV6fG9+fr7olgH4L4FUAAAAAADg1hiFZXu93kSIdXz0+/3o9/sxGAxiMBhkdb/fj+Fw\neO3ZaO+6s/GvvXj9Vfe+eJ//5dqIiOFwmD3eTV13Op0//r0GAODvS5IkpqenY2ZmJkqlUszMzPx0\nPaqTJIlarRZpmmZzkiSRJElUKpVsHh8Xz6rVatEvAQA5CKQCAAAAAAAAAAAAkMt00Q0AAAAAAAAA\nAAAAcLsJpAIAAAAAAAAAAACQi0AqAAAAAAAAAAAAALkIpAIAAAAAAAAAAACQi0AqAAAAAAAAAAAA\nALkIpAIAAAAAAAAAAACQi0AqAAAAAAAAAAAAALkIpAIAAAAAAAAAAACQi0AqAAAAAAAAAAAAALkI\npAIAAAAAAAAAAACQi0AqAAAAAAAAAAAAALkIpAIAAAAAAAAAAACQi0AqAAAAAAAAAAAAALkIpAIA\nAAAAAAAAAACQi0AqAAAAAAAAAAAAALkIpAIAAAAAAAAAAACQi0AqAAAAAAAAAAAAALkIpAIAAAAA\nAAAAAACQi0AqAAAAAAAAAAAAALkIpAIAAAAAAAAAAACQi0AqAAAAAAAAAAAAALkIpAIAAAAAAAAA\nAACQi0AqAAAAAAAAAAAAALn8ByCyEVrk+X29AAAAAElFTkSuQmCC\n" }, "2023-06-07-14wk-2_files/figure-ipynb/mermaid-figure-2.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACpQAAALQCAYAAACUxQEDAAAgAElEQVR4nOzdeXhV9Z348Q9JIAEi\nhE1AFtFBiktdqIp1RbRgcWepxSIqVcEWt9qnautoO9WxTjvFURRUECq4gghKqbhWxekG1lb0pyNS\nRRCQxQABAmT5/dEJY0wggdzcm9z7ej1PniTfc+73fIgQAd+e06S8vLw8AAAAAAAAAAAAAMhYWake\nAAAAAAAAAAAAAIDUEpQCAAAAAAAAAAAAZDhBKQAAAAAAAAAAAECGE5QCAAAAAAAAAAAAZDhBKQAA\nAAAAAAAAAECGE5QCAAAAAAAAAAAAZDhBKQAAAAAAAAAAAECGE5QCAAAAAAAAAAAAZDhBKQAAAAAA\nAAAAAECGE5QCAAAAAAAAAAAAZDhBKQAAAAAAAAAAAECGE5QCAAAAAAAAAAAAZDhBKQAAAAAAAAAA\nAECGE5QCAAAAAAAAAAAAZDhBKQAAAAAAAAAAAECGE5QCAAAAAAAAAAAAZDhBKQAAAAAAAAAAAECG\nE5QCAAAAAAAAAAAAZDhBKQAAAAAAAAAAAECGE5QCAAAAAAAAAAAAZDhBKQAAAAAAAAAAAECGE5QC\nAAAAAAAAAAAAZDhBKQAAAAAAAAAAAECGE5QCAAAAAAAAAAAAZDhBKQAAAAAAAAAAAECGE5QCAAAA\nAAAAAAAAZDhBKQAAAAAAAAAAAECGE5QCAAAAAAAAAAAAZDhBKQAAAAAAAAAAAECGy0n1AAAAAAAA\nAAAAkEiTbl6a6hEatctuOzDVIwCQAoJSAAAAAAAAAADSSvHmslSPAACNjkfeAwAAAAAAAAAAAGQ4\nQSkAAAAAAAAAAABAhvPIewAAAAAAAAAA0tr51x6Q6hEatKfv+keqRwCgARCUAgAAAAAAAACQ1vLy\ns1M9AgA0eB55DwAAAAAAAAAAAJDhBKUAAAAAAAAAAAAAGU5QCgAAAAAAAAAAAJDhBKUAAAAAAAAA\nAAAAGU5QCgAAAAAAAAAAAJDhBKUAAAAAAAAAAAAAGU5QCgAAAAAAAAAAAJDhBKUAAAAAAAAAAAAA\nGU5QCgAAAAAAAAAAAJDhBKUAAAAAAAAAAAAAGU5QCgAAAAAAAAAAAJDhBKUAAAAAAAAAAAAAGU5Q\nCgAAAAAAAAAAAJDhBKUAAAAAAAAAAAAAGU5QCgAAAAAAAAAAAJDhBKUAAAAAAAAAAAAAGU5QCgAA\nAAAAAAAAAJDhBKUAAAAAAAAAAAAAGU5QCgAAAAAAAAAAAJDhBKUAAAAAAAAAAAAAGU5QCgAAAAAA\nAAAAAJDhBKUAAAAAAAAAAAAAGU5QCgAAAAAAAAAAAJDhBKUAAAAAAAAAAAAAGU5QCgAAAAAAAAAA\nAJDhBKUAAAAAAAAAAAAAGS4n1QMAAAAAAAAAQCJt3Lgx1SNktFatWqV6BAAA9oKgFAAAAAAAAIC0\nsnXr1lSPkNEEpQAAjZNH3gMAAAAAAAAAAABkOEEpAAAAAAAAAAAAQIYTlAIAAAAAAAAAAABkOEEp\nAAAAAAAAAAAAQIYTlAIAAAAAAAAAAABkOEEpAAAAAAAAAAAAQIYTlAIAAAAAAAAAAABkOEEpAAAA\nAAAAAAAAQIbLSfUAAAAAAAAAAACQzn7847GxaNEfK621adM2Hn/8+RRNBABVCUoBAAAAAAAAIM1s\n2rQp3nvvvXj//ffj448/jjVr1sS6deuiuLg4tm3bFtnZ2ZGXlxctW7aMNm3aRPfu3WP//fePXr16\nRa9evSIrywNPAQAyjaAUAAAAAAAAgLR34403xttvv13tsQsvvDC+853v1Mt1X3zxxRg3blyV9d/+\n9rcJv9a2bdvi1VdfjVdffTXefvvtKC0t3eW5paWlsX379ti4cWOsXLky3n333Z3HCgoK4phjjokB\nAwbEIYcckvA5aVyOPvroKmtf+9rX4vLLL6/2GADQeAlKAQAAAAAAAMhoTz75ZJx88snRrVu3VI+y\nV7Zv3x5z5syJWbNmxcaNG+u8X2FhYbzwwgvxwgsvxCGHHBLDhg2LY489NgGTki4WLVoUixYtEpYC\nQJpxj3oAAAAAAAAAMlpJSUncc889UV5enupR9tjf//73uPLKK2Pq1KkJiUm/7N13342f/exncccd\nd8Tnn3+e8P1p3BYtWhRjxoyJK664IhYuXJjqcQCAOnKHUgAAAAAAAAAy3jvvvBPz58+PM844I9Wj\n1Nrjjz8ejzzySJSVldX6Nfn5+ZGbmxtlZWVRXFwcW7durdXrFixYEH/729/ixz/+cRx++OF7OzJp\n6s0334wxY8a4Y+luDBkyIvr1G1hprVmz3BRNAwDVE5QCAAAAAAAAQEQ89NBD0bdv32jTpk2qR9mt\nsrKymDBhQsybN2+35+Xn58dxxx0Xhx9+ePTq1Ss6duwYzZo1q3TO5s2b49NPP4333nsvFi1aFH/9\n61+jpKSk2v02bdoUt9xyS1x//fVx0kknJezHQ/pYtGhRLFq0KPr06RNXXHGFsPQLvva141I9AgDU\nSFAKAAAAAAAAAPHPuPL++++PG2+8MdWj7NYDDzyw25i0Y8eOccEFF0T//v2jadOmu92rZcuWcdBB\nB8VBBx0UZ599dhQWFsbs2bPjmWeeiW3btlU5f8eOHXHnnXdGs2bNom/fvnX+sdB4lJeXR5MmTWp1\nrjuWAkDjlJXqAQAAAAAAAAAgFVq2bFll7fXXX48///nPKZimdubOnRvPPvvsLo+ff/75cd9998XA\ngQNrjEmrU1BQEJdccknce++9ceihh1Z7Tnl5efzyl7+Mjz/+eI/3J7MsWrQoxowZE6NHj46FCxem\nehwAoAaCUgAAAAAAAAAy0rBhwyInp+qDPSdMmBDFxcUpmGj3li1bFpMnT672WE5OTtxwww1x2WWX\nRV5eXp2v1blz5/j3f//3OO2006o9vnXr1rjjjjuipKSkztci/QlLAaBxEJQCAAAAAAAAkJE6dOgQ\nQ4cOrbL+2WefxfTp01Mw0e7dddddsX379mqP/fCHP4yTTz45odfLycmJ6667Lvr161ft8U8++STm\nzJmT0GuS3oSlANCwCUoBAAAAAAAAyEhbt26Nb33rW7HffvtVOTZnzpxYsmRJCqaq3htvvBHvv/9+\ntceGDx8eJ510Ur1ct0mTJnH11VfHv/zLv1R7/LHHHovCwsJ6uTbpS1gKAA2ToBQAAAAAAACAjLR9\n+/bIzc2NsWPHVjlWVlYW99xzT5SWlqZgsqoef/zxatd79OgR3/72t+v12rm5ufGDH/wgsrOzqxzb\nunVr/O53v6vX65O+Miks/fGPx8bAgUdXevv2twekeiwAqERQCgAAAAAAAEBG2rFjR0REHHHEEXH6\n6adXOb5kyZIG8Uj39957L5YuXVrtscsvvzxycnLqfYYePXrEwIEDqz32u9/9LkpKSup9BtJXJoWl\nANCQCUoBAAAAAAAAyEjbt2/f+fGoUaOidevWVc6ZPn16rF69OpljVfHSSy9Vu96rV6848sgjkzbH\n0KFDIyuramawbt26ePPNN5M2B+lLWAoAqSUoBQAAAAAAoM42fV4Smz53dzqgcfliUNq6desYNWpU\nlXO2bdsW9913XzLHquIvf/lLteu7umNofenYsWP06dOn2mO7mhH2hrAUAFJDUAoAAAAAAECdFBWW\nxKzxy2PW+OVRVCgqBRqPLz+m/fTTT48jjjiiynkLFy6M1157LVljVbJs2bJYs2ZNlfUmTZrE8ccf\nn/R5Tj755GrX//rXvyZ5EjKBsBQAkktQCgAAAAAAwF4rKiyJp+5ZHpvWl8Sm9f/8WFQKNBalpaVV\n1saOHRvNmjWrsn7//fdHUVFRMsaq5H/+53+qXe/Zs2e0atUqydNEHHXUUdWur1y5MtatW5fkacgU\nXwxLP/3001SPAwBpS1AKAAAAAADAXikqLIlZ/xuTVti0/p9rolKgsdpvv/3iggsuqLJeWFgYDz30\nUNLnWbp0abXrX/nKV5I8yT+1bds29t1332qPLV++PMnTkGkWLVoU55xzTvz0pz8VlgJAPRCUAgAA\nAAAAsMcq7ky6cX3VcHSjO5UCjdzQoUOje/fuVdbnz58fixcvTuosK1eurHZ9//33T+ocX9SjR49q\n1wWlJMvcuXOFpQBQDwSlAAAAAAAA7JEvPuZ+VzaJSoFGLCcnJ8aOHVvtsfHjx8eOHTuSNsuuHiPf\nsWPHpM1Q22uvWrUqyZOQzsrLy2s8R1gKAIklKAUAAAAAAKDWqnvMfURE90Pyo/sh+ZXWNq0viVnj\nV4hKgUbp0EMPjW9+85tV1j/55JN48sknkzbHhg0bql1v27Zt0mb4snbt2lW7vnnz5iRPQjpr0qRJ\nRAhLASCZclI9AAAAAAAAAI3Dru5M2rV3fhx/XqeIiCgrWxXL3yvaeWzjuh3x1D3LY8hVXSO/wH+a\nAhqXSy65JP74xz/G559/Xml9xowZcfLJJ0e3bt3qfYZt27ZVu56Xl1fv196V5s2bV7u+devWJE+S\n3oqLi2Pr1q2xdevWnR8XFxdHaWnpzreysrIoKyuLkpKSnR9/8dgX31f38ZfP+eL7io9T7YthacXH\nuzJ37tyYO3dutG3bNs459L5kjJe2rrjiinrbOycnJ7KzsyM7OztycnKqfF7dsZycnMjNzY1WrVpF\nQUFBtG7dOlq3br3z81R+TwRIJ/7UDgAAAAAAQI12F5OeOLhTNPnf5+KdOLhTLJhVOSrdtL5EVAo0\nSvn5+TF69Oj4xS9+UWl9x44dMX78+PjFL35RY+BWV9u3b692vVmzZvV63d1p2rRpteuZHpQWFhZG\nUVFRFBUVxaZNmyq937x5c2zevDmKi4srxaFffF/xccUble1JWLp+/fpkjJTW3nzzzVSPsEeaNWu2\nMzL94ltBQUF07NgxunXrFt26dYv99tsv1aMCNGj+xA4AAAAAAMBu1TYmjYhokiUqBdLLSSedFC++\n+GIsXLiw0vrixYvj+eefj4EDB9br9XNycqq9S2kq7xxZVlZW7XpOTnp8f9+wYUOsW7du59vatWtj\n06ZNO4PRL8eimzZtEoAm0Z6EpWSO7du3x5o1a2LNmjW7PS8nJye6dOkS3bp1i65du+4MTbt37x6d\nOnVKm+9jAHvLd0EAAAAAAAB2aU9i0gqiUiDdfO9734srr7yyStj50EMPxbHHHhtt2rSpt2vn5eXF\n5s2bq6zv2LGj3q5Zk11du3nz5kmepPaKi4srRaIVoeiX19atW5fSry21Jyxlb5SUlMTHH38cH3/8\ncbXHu3TpEgcccEB89atfjcMPPzwOPfTQaNGiRZKnBEgdf1IHAAAAAACgWnsTk1aoKSoddk23aNEq\nu75GB0iojh07xogRI2Ly5MmV1ouKiuKBBx6IG264od6uvatIc9OmTfV2zZrs6tp5eXlJnaO0tDQ+\n//zzasPQL69VF+WSHsSkJNKKFStixYoVsWDBgoiIyMrKin/5l3+JI444Ymdk2q1btxRPCVB/BKUA\nAAAAAABUUZeYtEJt7lQqKgUai3PPPTd+//vfx4cfflhp/bXXXov+/fvHMcccUy/Xbd26dSxfvrzK\n+rp16+rlerVRWFhY7XpBQUHCr7Vhw4adgdeKFSti+fLlsXz58lixYkWsXr06ysrKEn5NGhd3KKU+\nlZWVxQcffBAffPBBzJw5MyIi9tlnn52B6RFHHBFHH310iqcESBxBKQAAAAAAAJUkIiatsKuodMPa\nHaJSoFHJzs6OsWPHxg9+8IMoLy+vdOy+++6LCRMm1MsdOvfbb7945513qqx/+umnCb9Wbe3q2l26\ndNnjvUpKSmLVqlU7I9Evx6NFRUU1b0JGqghJxaQk26ZNm2LBggU772LaokWL6Nu3b5xwwglx0kkn\nRbt27VI8IcDeE5QCAAAAAACw05aNpQmLSSuISoF00atXrzj77LPjmWeeqbT+2WefxSOPPBLf/e53\nE37Nrl27Vru+dOnShF+rtpYtW1bt+q5mre4uoxUfr1q1yl1G2SNCUhqaLVu2xCuvvBKvvPJKRET0\n7t07TjzxxDjxxBPjkEMOiaysvfgNNECKCEoBAAAAAACIiF3HpF0OarnXMWkFUSmQLkaOHBl/+MMf\nYs2aNZXWZ8+eHaecckr07Nkzodfbf//9q11fvHhxQq9TW6tXr47169dXWc/JydkZlN59992xfPny\n+PTTT+OTTz6JzZs3J3vMtJGfnx95eXnRvHnzaN68ebRo0SKys7MjOzs7srKyqnxc3Vptz/3yesXa\nL37xi1R/GSKi9iHpQQcdFGeddVZ8vjBJg6WpiRMn1tveJSUlO99KS0t3vv/ix18+p7S0NDZu3BiF\nhYWxYcOGSu+3bNlSb7Pujffeey/ee++9mDRpUuyzzz5x0kknxQknnBAnnHBC5Ofnp3o8gN0SlAIA\nAAAAALAzJt2wdkel9S4HtYwTh3WuU0xaQVQKpIPmzZvHmDFj4uc//3ml9bKyshg/fnz853/+Z2Rn\nJ+572WGHHRY5OTlRUlI59l+/fn0sXbo0DjzwwIRdqzb+9re/Vbt+8MEHR15eXkREPPzww8kcqcHI\nzc2NffbZJ/Lz8yM/Pz/22WefnZ+3adMmmjVrtjMMrYhE8/LyKgWjFWv77LNPqn84O6U6KK1tSNqn\nT5+44oor4uijj46IiPELlyRjvLRV8XVsLNauXRuFhYVVgtOKsH3ZsmVV/keAZNi0aVPMmzcv5s2b\nFxERp556apx55pnRr1+/pM8CUBuCUgAAAAAAgAxXU0yayKd0ikqBdHDcccfF8ccfH//93/9daf2D\nDz6IZ555Js4///ydazk5dfvP8s2bN4/evXtXe0fSV155JelB6euvv17t+te+9rWkzlHf2rdvH+3b\nt4927dpFu3btokOHDjsj0S+/32effaJNmzapHjnt7G1ISmaq+DW7O8XFxfHJJ5/Exx9/XOV9YWFh\nUuZ85ZVX4pVXXom2bdvGoEGD4rzzzosePXok5doAtSEoBQAAAAAAyGDJjEkriEqBdDBmzJh46623\nqjxqedq0aXHCCSfEvvvuGxH/vGtlXR177LHVBqUvvvhifOc739l5Z9D6tnr16njrrbeqPda3b9+k\nzFAXBQUFOwPRireKaLRt27Y7Py8oKEj1qBlNSEp9ycvLi4MOOigOOuigKsc2b94c//jHP+L//b//\nF++991688847sWRJ/d3ldv369TF9+vSYPn16HHbYYXH22WfHwIEDIz8/v96uCVAbglIAAAAAAIAM\nlYqYtIKoFGjs2rVrFxdffHFMmDCh0vq2bdvivvvui5/+9KcREdGsWbM6X+u0006LadOmxY4dlb9f\nb9y4MebNmxeDBw+u8zVq46mnnoqysrIq61/96leje/fuSZnhy1q0aFElDt3VW3a2f680ZEJSUqll\ny5Zx2GGHxWGHHbZzrbi4eGdc+s4778S7774by5cvT/i1Fy9eHIsXL45x48bFWWedFd/5zneiW7du\nCb8OQG0ISgEAAAAAADJQKmPSCqJSoLEbNGhQvPzyy/H+++9XWv/LX/4Sr7/+epx00kkJuXtoQUFB\nnHDCCfH73/++yrHHH388+vXrF23btq3zdXZn2bJlMX/+/GqPnXXWWfV23aysrOjUqVN07do1unTp\nEl27dt35cbdu3aJly5b1dm2SQ0hKQ5WXlxdHHnlkHHnkkTvXioqK4u9//3u888478cYbb1R79+i9\nVVxcHDNnzoyZM2fGySefHMOHD49jjjkmYfsD1IagFAAAAAAAIMM0hJi0gqgUaMyysrLiqquuimuu\nuSZKS0srHbv//vvjqKOOihYtWiTkWsOGDYvXXnutyh1CN2/eHOPGjYuf/exnkVVP38BLSkrirrvu\nipKSkirHevToEV//+tfrtH+LFi12xqJfjEa7du0anTp1ipwcaUM6EpLSGOXn58fxxx8fxx9/fFx+\n+eWxYcOGeOONN2LBggXxhz/8ITZt2pSQ67z22mvx2muvRa9eveLCCy+MM844w/dCICl8pwEAAAAA\nAMggDSkmrVARlb4+Y2Ws+GDzzvWKqHToNV2jeb6oFGiYDjjggDj//PNj5syZldY///zzmDJlSgwb\nNiwh1+nRo0ecccYZMW/evCrH3nzzzZgyZUp897vfTci1vmzChAlV7sJaYfTo0bV6lHyHDh2qxKIV\nAWmbNm0SPTINmJCUdNK6desYNGhQDBo0KEpLS+Ptt9+O119/PRYsWBAffvhhnff/n//5n/jpT38a\n99xzT3zrW9+KIUOGREFBQQImB6ieoBQAAAAAACBDNMSYtEKTrIgTh3WOBdVEpbPuWR6DrxKVAg3X\n8OHDY8GCBbFq1apK688991xCH1c8YsSIWLBgQWzcuLHKsVmzZkV2dnZcfPHFNYZ6tVVWVhYPPvhg\nPPfcc9Ue79+/fxx++OFV1r/97W9XeTx9s2bNEjITjZeQlHSXnZ0dRx55ZBx55JFx1VVXxYoVK+LZ\nZ5+N3/3ud7FixYo67b1u3bqYMGFCTJkyJYYPHx4XX3xx5OfnJ2hygP+Twr8WAAAAAAAAIFkackxa\nIet/o9IuB7WstP75Z/+MSrcWle7ilQCplZeXF9///verPfbQQw8l7DqtW7eOm266aZd3BJ0xY0bc\nfvvtUVhYWOdrrV+/Pn72s5/FM888U+3xHj167PLH/MMf/jCGDx8eJ510UhxwwAFi0gxXXl4eEVGr\nkHTixInxwAMPiElJC126dIkxY8bEnDlzYvLkyTFkyJBo1apVnfYsLi6OKVOmxNlnnx1Tp06N4uLi\nBE0L8E8N4K8GAAAAAAAAqE+NISatICoFGqs+ffpEv379qqzX9a50X3b44Yfv9tH2f/jDH+LKK6+M\nWbNm7VVotHnz5nj88cdjzJgxsXDhwmrPad26ddx8882Rl5e3x/uTOYSk8H+OOOKIuOmmm2L+/Pnx\nq1/9Kk499dRo2rTpXu+3adOmGD9+fJx77rkxY8aMKCkpSeC0QCbzyHsAAAAAAIA01phi0goVUemC\nGStjxQebd65XRKWDr+oazfOrvzsfQCpdfvnlsXDhwigqKqrX65x77rlRWloakydPrvb4xo0bY/Lk\nyfHoo4/G8ccfH0cddVT07t079t133yp3N92+fXusXLky3n///Vi0aFH85S9/iW3btu3y2h06dIif\n//zn0blz54T+mEgfHm0Pu9a0adPo169f9OvXLzZs2BBPPfVUzJgxI9asWbNX+61bty7uvPPOmDZt\nWowZMybOOOOMyGqIv8EHGg1BKQAAAAAAQJpqjDFpBVEp0BgVFBTEqFGj4u677673aw0ePDhatWoV\n9957b2zfvr3ac7Zu3RovvfRSvPTSSxERkZOTE61atYrc3NwoKyuL4uLi2LBhQ62vecABB8Qtt9wS\n++67b0J+DKQXISnsmdatW8eoUaNi5MiR8dJLL8Vjjz0Wixcv3qu9Pv3007jlllvi4YcfjptvvjkO\nO+ywBE8LZIoG/NcEAAAAAAAA7K2tRY03Jq1QEZV2OahlpfWKqHRrUWmKJgPYtQEDBiQt5Dn99NPj\n7rvvjq985Su1Or+kpCTWr18fK1eujNWrV9c6Js3Ozo4LLrggxo0bJyalCo+2h7rJycmJgQMHxtSp\nU+ORRx6JM844I3Jy9u4egUuWLIlLLrkkbrvttigsLEzwpEAmaAR/VQAAAAAAAMCe2FpUGrOqiUk7\nHdii0cSkFUSlQGPTpEmTGDt27F7HQHuqW7du8ctf/jKuvvrq2G+//RK6d5MmTeLEE0+Mu+++O0aO\nHBlNmzZN6P40bkJSSLyvfOUrcdttt8W8efPisssui4KCgr3aZ/bs2TFkyJCYPXv2zl+rALXRiP66\nAAAAAAAAgJpUxKSff1Y1Jj3lgsYVk1YQlQKNTbdu3eJb3/pW0q6XnZ0dAwcOjPvvvz9uvPHG+PrX\nvx65ubl7vV/nzp1j8ODBMXHixLjpppuiR48eCZyWxk5ICvWvbdu2MWbMmJg7d25cc8010bp16z3e\nY8OGDXHbbbfFRRddFB988EE9TAmkoyblMnQAAAAAAIC0UGNMmr378KOhKyuLWDBjZaz4YHOl9Tb7\nNo3BV3WN5vnZKZoMaGhWr16d6hFSbtu2bfH222/H0qVL4+OPP45PPvkkNm3aFFu2bImtW7dGdnZ2\nNG/ePFq0aBHt27eP7t27x/777x+HHnponQPSjh07JuhHQUNQEYOWl5fXGJFG/DMkveKKK1IekY6/\nbkmlz4ff3DNFkzQOj91W+es1dpyvV0OyZcuWmD59ejzyyCOxefPmml/wJU2aNImhQ4fG97///cjP\nz6+HCYF0ISgFAAAAAABIA+kek1bYXVQ65JpukdeiEd6CFUg4QWlqCUrTS23D0IYSklYQlO4ZQWnj\nsGHDhpg6dWo8+eSTsW3btj1+fbt27eLWW2+N448/vh6mA9KBP1EDAAAAAAA0cpkSk0ZEZGVFnDis\nc3Q5qGWl9c8/2xFPj18exVvKUjQZAGQmj7aH5GndunVcc8018eyzz8bQoUMjJydnj16/bt26uPrq\nq+OOO+6I4uLiepoSaMwEpQAAAAAAAI1YJsWkFXYVla5buV1UCgBJIiSF1Gnbtm3ceOONMXPmzL36\n9ffUU0/FBRdcEO+88049TAc0Zh55DwAAAAAA0EhlYkz6RWVlEQtmrIwVH2yutN6uc7M4f2zXyGvh\n3iqQqTzyPrU88p6GwCPv94xH3jduL774Yvz617+Ozz77bI9el5WVFRdffHGMHj16j+92CqQnf4oG\nAAAAAABohDI9Jo1wp1IAAIiIOP3002PWrFkxcuTIPQpDy8rKYsqUKTFixIj4xz/+UY8TAo2FoBQA\nAAAAAKCREZP+H1EpAABE5OXlxdVXXx2PP/54HHXUUXv02iVLlsSFF14Y06dPj7Iyv3+GTCYoBQAA\nAAAAaETEpFWJSgEA4J969OgRDz74YNx+++3Rvn37Wr9ux44dcdddd8X3vve92LRpUz1OCDRkglIA\nAAAAAIBGQky6a6JSoMKOHTtqPgkA0tzAgYZ4P6EAACAASURBVANj5syZMWjQoD163cKFC2P48OHx\n4Ycf1tNkQEMmKAUAAAAAAGgExKQ1E5VC5iotLY0FCxbErbfeGqeffnqqxwGABiE/Pz/+7d/+Lf7j\nP/4j8vPza/26VatWxciRI+Pll1+ux+mAhkhQCgAAAAAA0MCJSWtPVAqZZfHixXHnnXfGwIED49pr\nr43f/va3sXnz5lSPBQANSv/+/WPmzJlxzDHH1Po127Ztix/96Edx1113RWlpaT1OBzQkglIAAAAA\nAIAGrHhLmZh0D4lKIb2tWrUqJk2aFIMHD45LLrkkZsyYEYWFhakeCwAatPbt28eECRPihhtuiNzc\n3Fq/bvr06TF69Gj/roUM0aS8vLw81UMAAAAAAABQVfGWsnh6/PJYt3J7pfWOPZpHv+H7iUlrUFYW\nsWDGyljxQeW7Fbbr3CyGXN01muW59wo0FkVFRfH888/HvHnz4q233qrx/P79++/R/llZWdGjR484\n9NBD45BDDomWLVvW/CJ2KS8vL9UjQIy/bkmlz4ff3DNFkzQOj91W+es1dpyvVzpbtmxZ3HTTTfH+\n++/X+jX77rtv3HXXXdGrV696nAxINUEpAAAAAABAA7TbmPTb+0VWjpi0NnYVlXbomhvnf7+LqBQa\nsJKSkliwYEHMmzcvXn/99dixY0fNL9oDOTk50bdv3+jfv3+ceuqp0apVq4TuD6SWoHTPCEozT0lJ\nSUyaNCkeeuihKCur3R38mzVrFr/85S/jhBNOqOfpgFQRlAIAAAAAADQwYtLEEpVC4/L222/Hb3/7\n23jhhRdiw4YNCd07Kysrjj322BgwYED0798/8vPzE7o/0HAISveMoDRz/fWvf40f/vCHtf53bpMm\nTeLmm2+Oc889t54nA1IhJ9UDAAAAAAAA8H/EpImXlRVx4rDOVaLSNcu3xdP3rhCVQgOwfv36mDt3\nbjzzzDPx0UcfJXz/I488MgYMGBADBgyIgoKChO8PAI3VUUcdFY8++mhcddVVsXTp0hrPLy8vj5//\n/OexatWqGD16dBImBJJJUAoAAAAAANBAiEnrj6gUGp7S0tJ44403Ys6cObFgwYIoLS1N6P69e/eO\ngQMHxhlnnBEdOnRI6N4AkE46duwYDz/8cPzrv/5rvPLKK7V6zYMPPhiffPJJ/OxnP4vs7Ox6nhBI\nFkEpAAAAAABAAyAmrX+iUmgYPvnkk5gzZ07MnTs31q5dm9C9DzjggBg4cGAMHDgwunXrltC9ASCd\n5eXlxS9/+cuYOnVq3HvvvVFeXl7ja5577rlYv359/PrXv468vLwkTAnUN0EpAAAAAABAiolJk0dU\nCqlRXFwcL774YsyePTveeuuthO7drl27GDhwYAwaNCh69+6d0L0BINNccsklceihh8YPf/jD2Lx5\nc43n//nPf45Ro0bFvffeG23atEnChEB9alJem5wcAAAAAACAeiEmTY2ysqgSlUZEdOiaKyqFBFq8\neHHMnj07XnjhhVpFKbWVl5cXp5xySgwaNCi+/vWvR1aWX7NAZeOvW1Lp8+E390zRJI3DY7dV/nqN\nHefrlemWL18e11xzTXz88ce1Or9Tp04xceLE6Nq1az1PBtQnQSkAAAAAAECKiElTq6ws4tXHP41V\nS7dUWheVQt1s2LAh5s6dG3PmzImlS5cmbN8mTZrE1772tRg0aFCcfvrp0aJFi4TtDaQfQemeEZRS\nnaKiovjBD34Qb775Zq3OLygoiIkTJ0bPnn7+QGMlKAUAAAAAAEgBMWnDUFZaHq8+sVJUCgmwcOHC\nmDVrVrz88stRUlKSsH0POOCAOPPMM+PMM8+MDh06JGxfIL0JSveMoJRd2b59e9x0003x6quv1ur8\ngoKCmDRpUvTo0aOeJwPqg6AUAAAAAAAgycSkDYuoFPZeUVFRPPvss/HUU0/FRx99lLB927RpEwMH\nDowzzzwzDj744ITtC2QOQemeEZSyO+Xl5XHnnXfGzJkza3V+QUFBTJkyJbp161bPkwGJlpPqAQAA\nAAAAADKJmLThycpuEqdc0LlKVLpm+bZ4+t4VMXhs12ia658LfNHixYtj5syZ8cILL8S2bdsSsmdW\nVlYcf/zxcd5558VJJ50U2dnZCdkXAKibJk2axI033hgdO3aMe++9t8bzCwsL47LLLotJkyaJSqGR\nEZQCAAAAAAAkiZi04dpdVDr7vuVx3vdEpVBcXBzz5s2Lp556Kt5///2E7du1a9c455xz4pxzzon2\n7dsnbF8AILEuvfTS6NSpU9x6661RVla223PXrVsnKoVGSFAKAAAAAACQBNuLxaQN3a6i0tXLRKVk\ntqVLl8aTTz4Z8+bNiy1bttT8glrIzc2N/v37x7nnnhtHH310QvYEAOrfN7/5zWjbtm1cd911sX37\n9t2eWxGVTpkyJfbbb78kTQjUhaAUAAAAAACgnm0vLoun710hJm0ERKXwTyUlJfHyyy/Hk08+GW+9\n9VbC9u3du3ecd9558c1vfjNatmyZsH0BgOTp27dv3H///XHllVdGcXHxbs/94p1KRaXQ8GWlegAA\nAAAAAIB0VhGTrlm+rdJ6+655YtIGqiIq7XRgi0rrFVHpjm3lKZoM6t/69evjgQceiLPOOit+/OMf\nJyQm3WeffeJb3/pWPP744zF9+vQYOnSomBQAGrmvfvWrcffdd0deXl6N53722Wdx2WWXxerVq5Mw\nGVAX7lAKAAAAAABQT3YXk/b/ThcxaQPmTqVkmr/97W/x5JNPxksvvRQlJSUJ2fPwww+PIUOGxIAB\nA6Jp06YJ2RMAaDj69OkTd999d4wdOza2b9++23M/++yzGD16dEydOjUKCgqSNCGwp9yhFAAAAAAA\noB7UFJNmNxUjNnTuVEq62759ezzzzDMxYsSI+O53vxvz58+vc0zasmXLGDp0aMycOTMeeuihOPPM\nM8WkAJDG+vTpE+PGjYtmzZrVeO7y5ctj7NixUVxcnITJgL3RpLy83J90AQAAAAAAEkhMml7KSsur\n3Kk0IqJj91x3KqVRWrVqVTz55JMxZ86c2LBhQ0L27N27dwwePDgGDRpUq0ffAtS38dctqfT58Jt7\npmiSxuGx2yp/vcaO8/Viz/zpT3+Ka665plb/c8oJJ5wQ48aNi6ws90KEhsavSgAAAAAAgAQSk6Yf\ndyolXfzpT3+K66+/Ps4555x4+OGH6xyT5uXlxTnnnBNTp06N6dOnx+DBg8WkAJCh+vbtG7/61a8i\nOzu7xnPfeOONuOOOO5IwFbCnclI9AAAAAAAAQLoQk6aviqj0y3cqrYhK3amUhqq4uDieffbZeOKJ\nJ+Kjjz5KyJ5du3aN4cOHx1lnnRUtW7ZMyJ4AQON34oknxp133hk33HBDlJaW7vbcp59+Ojp37hyj\nRo1K0nRAbQhKAQAAAAAAEkBMmv5EpTQma9asiSeeeCJmzZoVGzdurPN+OTk5cdppp8WQIUOiT58+\nCZgQAEhH/fr1i9tvvz1uvPHGGs+97777omvXrjFgwIAkTAbUhqAUAAAAAACgjsSkmaOmqPT873eN\nnGb+eZM67777bjzyyCPx4osv1nhnsNro1KlTDBkyJM4///woKChIwIQAQLo7/fTT4+qrr4677767\nxnNvueWWaN26dfTt2zcJkwE1EZQCAAAAAADUgZg08+wuKp0zcUWcO6aLqJSkKi0tjVdeeSUeeeSR\nePvttxOy53HHHRdDhw6Nk08+ObKyshKyJwCQOUaOHBkrV66MGTNm7Pa8kpKSuP7662Pq1KnRs2fP\nJE0H7IqgFAAAAAAAYC+JSTPXrqLSlf8oFpWSNFu2bImnn346HnvssVi1alWd98vPz4+zzz47Lrjg\ngujatWsCJgQAMtmPfvSjWL16dbz22mu7Pa+4uDjGjh0bjz32WLRp0yZJ0wHV8b+SAQAAAAAA7AUx\nKRVRaacDW1Rar4hKS7aXp2gy0t2aNWviv/7rv2LQoEExbty4OsekvXr1iptvvjmee+65uP7668Wk\nAEBCNGnSJO6888448sgjazx37dq1ce2110ZJSUkSJgN2RVAKAAAAAACwh8SkVBCVkkxLliyJW265\nJc4+++yYNm1aFBUV7fVeOTk5ccYZZ8TkyZPj0UcfjfPOOy/y8vISOC0AQETTpk3jv/7rv2L//fev\n8dx33nknbrvttiRMBeyKR94DAAAAAADsgR3bysWkVFIRlb76xMpYtXTLzvWKqPTcMV0ip5mfF+y9\n119/PR599NH4y1/+Uue9CgoKYvjw4TFkyJAoKChIwHQAALvXsmXLmDhxYlx00UWxdu3a3Z47d+7c\n6NWrV1x44YVJmg74IkEpAAAAAABALe3YVh6z71suJqUKUSmJVlJSEvPnz49p06bFkiVL6rzfwQcf\nHMOHD48BAwZETo7/TAwAJFeHDh1i4sSJcckll9R4l/Vx48ZFz54949hjj03SdEAFj7wHAAAAAACo\nhYqYdPWyyjFpu/1yxaRExP9FpZ0ObFFpvSIqLdlenqLJaEyKi4t3PoL+1ltvrVNMmpWVFaeddlpM\nmjQppk2bFoMGDRKTAgAp06NHjxg/fnyNvx8pLy+PH/3oR7F8+fIkTQZUEJQCAAAAAADUYLcx6Yiu\nYlJ2EpWytwoLC2PChAnxzW9+M37961/HqlWr9nqv/Pz8GDFiRPz2t7+NO++8M4488sgETgoAsPcO\nO+yw+OlPf1rjeUVFRXHNNdfEli1bajwXSBxBKQAAAAAAwG7UFJN6jDlfJiplT6xcuTLuuOOOGDRo\nUEyePDk2bdq013t17tw5rr/++njuuefi2muvjQ4dOiRwUgCAxDjjjDNixIgRNZ738ccfx4033hjl\n5X7/DMnSpNyvOAAAAAAAgGqJSamLstLyePWJlbFqaeW7KnU+IC/Ou7KLO9tmuKVLl8YDDzwQL7/8\ncpSVldVpr0MOOSQuuuiiOO200yIryz2FACIixl+3pNLnX+lbkKJJGof3/1RY6fOx43qmaBIyRVlZ\nWYwdOzb+/Oc/13juJZdcEmPHjk3CVICgFAAAAAAAoBpiUhJhV1Fp14Oax9mX7ycqzUALFy6MqVOn\nxh//+Mc673XyySfHiBEjok+fPgmYDCC9fDkoZc8ISkmGoqKiGDFiRCxfvrzGc3/1q19Fv379kjAV\nZDZBKQAAAAAAwJeISUkkUSnl5eXx6quvxtSpU2Px4sV12qtZs2Zx5plnxsiRI6Nbt24JmhAg/QhK\n60ZQSrJ89NFHcdFFF8XWrVt3e15eXl48+uij0b179yRNBplJUAoAAAAAAPAFYlLqg6g0M5WUlMRz\nzz0Xv/nNb+If//hHnfZq1apVDBs2LIYPHx4FBR7bDFATQWndCEpJpgULFsS1115b43kHHnhgTJs2\nLXJzc5MwFWQmQSkAAAAAAMD/EpNSn0SlmaO4uDhmz54d06dPj1WrVtVpr06dOsWIESPivPPOi7y8\nvARNCJD+3nz581SP0Kj16d8m1SOQYe6///548MEHazzv7LPPjltvvTUJE0FmEpQCAAAAAACEmJTk\nKCstj98/9mms/qjyIz1FpemhqKgonnjiiXjssceisLCwTnsddNBBcfHFF8c3vvGNyM7OTtCEAAAN\nU3l5eVx33XWxYMGCGs+9/fbbY+DAgUmYCjKPoBQAAAAAAMh4YlKSqaykPH7/uKg0nWzYsCGmT58e\nM2bMiKKiojrtdcwxx8TFF18cxx13XIKmAwBoHLZs2RIjR46Mjz76aLfn5eXlxaOPPhrdu3dP0mSQ\nOQSlAAAAAABARhOTkgqi0vSwdu3amDp1asyePTuKi4v3ep8mTZrEqaeeGqNGjYrevXsncEIAgMZl\n2bJlceGFF9b4e6sDDzwwpk2bFrm5uUmaDDKDoBQAAAAAAMhYYlJSSVTaeK1YsSKmTJkSc+fOjZKS\nkr3eJycnJwYNGhSXXnppdOvWLYETAgA0XvPnz4+f/OQnNZ537rnnxr/+678mYSLIHIJSAAAAAAAg\nI5VsL4+n7xWTklqi0sblo48+ikmTJsXzzz8fZWVle71PXl5eDB48OEaOHBnt27dP4IQAAOnhtttu\ni9mzZ9d43u233x4DBw5MwkSQGQSlAAAAAABAxinZXh5zJq6Ilf+o/BhFMSmpsLuo9JzR+0VWtp+P\nqbZkyZJ48MEH46WXXqrTPq1bt44LLrgghg8fHvvss0+CpgMASD/btm2Liy66KJYuXbrb8/Ly8uLR\nRx+N7t27J2kySG+CUgAAAAAAIKPs2F4ez1QTk7bplBunj+wSOc2yUjQZmWxXUWn33i3irMs6i0pT\n5N13340HH3wwXn/99Trts++++8aIESNi8ODBkZeXl6DpAADS27Jly+LCCy+M4uLi3Z534IEHxrRp\n0yI3NzdJk0H6EpQCAAAAAAAZY1d3Jm3TKTdOu6hLNM0Vk5I6otKG4+23346JEyfGn/70pzrt061b\nt7j44ovjrLPOipycnARNBwCQOebPnx8/+clPajxv2LBhccMNNyRhIkhvglIAAAAAACAjiElpDESl\nqfXHP/4xJk+eHH/961/rtE/Pnj3j0ksvjW984xuRleV7CwBAXfzbv/1bPPPMMzWed88998TXv/71\nJEwE6UtQCgAAAAAApD0xKY2JqDT53njjjXjwwQdj8eLFddrnsMMOi0svvTROOeWUBE0GAMC2bdvi\noosuiqVLl+72vIKCgpg1a1a0atUqSZNB+hGUAgAAAAAAaU1MSmO0q6h0/4NbxNlX7JeiqdLPa6+9\nFpMmTYp33323TvscffTRMWrUqDj22GMTNBkAAF+0bNmyuPDCC6O4uHi3551yyinxn//5n0maCtKP\noBQAAAAAAEhbYlIaM3cqrT+///3vY9KkSfHee+/VaZ8TTjghRo8eHYccckiCJgMAYFfmz58fP/nJ\nT2o875ZbbolzzjknCRNB+hGUAgAAAAAAaalke3k888Cn8emHlWO8tp1zo/8IMSmNg6g0ccrLy+Pl\nl1+OSZMmxQcffFCnvU499dQYPXp09OzZM0HTAQBQGzfffHM899xzuz0nLy8vZs6cGZ06dUrSVJA+\nBKUAAAAAAEDacWdS0omotG7KysrixRdfjMmTJ8eHH3641/tkZWXFN77xjbj88sujR48eCZwQAIDa\nKioqiqFDh8batWt3e97hhx8ekyZNiqwsf/aDPSEoBQAAAAAA0oqYlHQkKt1zZWVl8fzzz8ekSZPi\no48+2ut9srOzY9CgQXHZZZdFly5dEjghAAB7Y+HChTFmzJgaz7vyyivju9/9bhImgvQhKAUAAAAA\nANKGmJR0JiqtndLS0pg3b15MmTIlli1bttf7NG3aNM4555wYNWpUdOzYMYETAgBQV3fddVdMnz59\nt+dkZ2fH1KlT4+CDD07SVND4CUoBAAAAAIC0ICYlE4hKd62kpCRmz54dv/nNb2LlypV7vU+zZs3i\n/PPPj0svvTTat2+fwAkBAEiUHTt2xPDhw2u8E33Xrl3jiSeeiNzc3CRNBo2boBQAAAAAAGj0xKRk\nElFpZdu2bYunnnoqHn744Vi7du1e75ObmxuDBw+OSy65JNq1a5fACQEAqA8ffPBBXHTRRVFSUrLb\n84YNGxY33HBDkqaCxk1QCgAAAAAANGqlO8pj9gQxKZmlrKQ8Xpq+ItYur/zzPpOi0q1bt8YTTzwR\njzzySHz++ed7vU9eXl4MHTo0Lr744mjTpk0CJwSA/8/efYdHWaZvHz9TSCcNSAFCkS7NRVCaHQUX\nkF4EpSgdKQr6c1d2wX1dRSmCogKC0q0UAQUFFEWqgFIEQhEkEQwlEEhIYZJ5/3CDxOeZyWSSTCbJ\n93McOY5wzf3czwUkEx3OuW4AhW3x4sWaOXNmruvmzZun2267zQUdAcUbgVIAAAAAAAAAAFBsZV63\nas27ZxR/LOekRsKkKA0yr1v19dLSFypNTk7WsmXL9MEHH+jq1atO7+Pv76+ePXuqX79+CgkJKcAO\nAQAA4CpWq1VPPvmk9u/fb3ddVFSUPv30U/n5+bmoM6B4IlAKAAAAAAAAAACKJVth0pAKPnpwQGXC\npCgVSlOo9OrVq1qyZImWLVum1NTU3C+wwd/fX71791bfvn0VGhpagB0CAACgKPz+++/q1auXUlJS\n7K7r1auXnn32WRd1BRRPBEoBAAAAAAAAAECxYy9M+kC/yvL1J0yK0qOkh0qTk5P1wQcfaOnSpUpO\nTnZ6n6CgIPXu3VuPPfaYgoKCCrBDAAAAFLUvvvhC//73v3Ndt2DBAjVo0MAFHQHFE4FSAAAAAAAA\nAABQrBAmBYxKYqg0LS1Ny5Yt05IlS3TlyhWn9wkKCtKjjz6qvn37EiQFAAAowZ5//nlt3LjR7prK\nlSvrk08+UZkyZVzUFVC8ECgFAAAAAAAAAADFBmFSwDa7odLBFeVZTL490tLS9PHHH2vRokW6fPmy\n0/tkTyTt27evypYtW4AdAgAAwB0lJyerU6dOSkpKsrvu8ccf15gxY1zUFVC8ECgFAAAAAAAAAADF\nAmFSIHe2QqXV6wfq4Sei3TpUmpGRoU8++UQLFy5UYmKi0/sEBgbeONqeICkAAEDpsnHjRj3//PN2\n13h6emrx4sWqU6eOi7oCig8CpQAAAAAAAAAAwO0RJgUcV9xCpdevX9eKFSv0/vvv68KFC07vExAQ\noN69e+vxxx8nSAoAAFCKjR07Vt9//73dNdWrV9cHH3wgb29vF3UFFA8ESgEAAAAAAAAAgFsjTArk\nXeZ1qzYtjtfFM+k56u4UKrVYLFq1apXee+89nTt3zul9AgIC1KtXLz322GMKCQkpwA4BAABQHF28\neFHdunVTcnKy3XWDBg3SsGHDXNQVUDwQKAUAAAAAAAAAAG6LMCngPEuGVV8vcc9Q6fLly/Xee+8p\nISHB6T38/PxuTCQlSAoAAICbff7555o4caLdNV5eXvrggw90yy23uKgrwP0RKAUAAAAAAAAAAG6J\nMCmQf+4UKs3MzNS6des0b948xcfHO72Pv7+/evbsqX79+hEkBQAAgE0jR47Uzp077a6pXbu2Fi9e\nLC8vLxd1Bbg3AqUAAAAAAAAAAMDtECYFCk5Rh0qzsrL01Vdfae7cuTp9+rTT+/j5+alXr156/PHH\nFRoaWoAdAgAAoCQ6d+6cunXrptTUVLvrRowYoSeeeMJFXQHujUApAAAAAAAAAABwK4RJgYJXFKFS\nq9WqjRs3as6cOTp16pTT+/j5+d2YSEqQFAAAAHmxYsUKvfzyy3bXeHt765NPPlFMTIyLugLcF4FS\nAAAAAAAAAADgNgiTAoXHVaFSq9Wqb775RnPnztXx48ed3sfPz089evRQ//79CZICAADAaYMHD9aP\nP/5od02jRo303nvvuagjwH0RKAUAAAAAAAAAAG4hK9Oq1XMIkwKFqbBDpd99953mzJmj2NhYp/fw\n8/NT9+7dNWDAAIKkAAAAyLczZ86oR48eSk9Pt7tuwoQJ6ty5s4u6AtwTgVIAAAAAAAAAAFDksjKt\nWjvvrE4fuZajTpgUKHiFESrdunWr5syZo0OHDjndV3aQtF+/fgoPD3d6HwAAAOCvli1bpunTp9td\nExQUpFWrVvGmJpRqBEoBAAAAAAAAAECRshUmDS5XRm0GxBAmBQpBQYVKd+7cqdmzZ+vAgQNO9+Lr\n66vu3burf//+BEkBAABQKKxWqwYOHKiDBw/aXdexY0dNnDjRRV0B7odAKQAAAAAAAAAAKDJ2w6T9\nK8s3wKuIOgNKPkuGVRsXxevS73kPlf7000+aNWuWfvrpJ6fv7+vrq27dumnAgAEESQEAAFDoTp06\npd69e8tisdhdN3/+fDVu3NhFXQHuhUApAAAAAAAAAAAoEoRJgaJ3PT1Lmxb/5nCo9MCBA3rrrbe0\ne/dup+/p4+Ojbt26aeDAgQRJAQAA4FKzZs3SggUL7K6pWrWqPvroI3l7e7uoK8B9ECgFAAAAAAAA\nAAAuR5gUcB+OhEoPHTqkt99+Wzt27HD6Pj4+PuratasGDBig8uXL57dtAAAAIM/S0tLUrVs3JSQk\n2F331FNPacCAAS7qCnAfBEoBAAAAAAAAAIBLESYF3I+tUGmFqlZtO/m2tm7d4vTeBEkBAADgTrZu\n3aoxY8bYXePr66vly5crKirKRV0B7sEz9yUAAAAAAAAAAAAFgzAp4J7K+HrqgccrKSzKN0f9/K8e\n8rvUXB4eef/eLFOmjHr16qXVq1dr/PjxhEkBAADgFlq1aqX77rvP7pr09HS9/PLLLuoIcB9MKAUA\nAAAAAAAAAC5BmBRwf7YmlcZd3KOvD0+X1ZqZ6x5lypRRly5d9MQTTxAiBQAAgFu6cOGCOnXqpPT0\ndLvrpkyZkmv4FChJCJQCAAAAAAAAAIBCR5gUKD7shkoPTZNVWabXlSlTRp07d9bAgQMVERHhilYB\nAAAApy1btkzTp0+3u6ZcuXL67LPP5Ofn56KugKJFoBQAAAAAAAAAABQqwqRA8WMrVHrqwk59e3hm\njlCpt7e3OnfurCeeeIIgKQAAAIqNzMxM9e3bV8ePH7e77rHHHtPYsWNd1BVQtAiUAgAAAAAAAACA\nQkOYFCi+rqdnacOCeCWdz8hRzw6Venl7EiQFAABAsXbo0CH169fP7hpPT08tW7ZMNWvWdFFXQNEh\nUAoAAAAAAAAAAAoFYVKg+EtPzdKmRcZQ6XXfePUZe6siowiSAgAAoHibPHmyPv30U7trGjRooAUL\nFrioI6DoeBZ1AwAAAAAAAAAAoOQhTAqUDL7+nnqgX2WFVPDJUS+TXll712fJmmXjQgAAAKCYGDVq\nlEJDQ+2uOXjwoDZs2OCijoCiQ6AUAAAAAAAAAAAUqKwsESYFShBbodIT+5K1ftHvhEoBAABQrAUG\nBmr8+PG5rps2bZoyMjJyXQcUZwRKAQAAAAAAAABAgcnKkta9R5gUKGkIlQIAAKAka9eunZo2bWp3\nzYULF7Rw4UIXdQQUDQ+r1Wot6iYA3ueOJgAAIABJREFUAAAAAAAAAEDxlx0mPflzSo46YVKg5EhP\nzdKmRfFKOp9zMlONxkFq1y9KHoyzAQAAQDEVFxenHj16yGKx2Fzj5+enlStXqkKFCi7sDHAd/pcO\nAAAAAAAAAADkm60waVAYYVKgJGFSKQAAAEqqmJgY9erVy+6atLQ0zZw500UdAa5HoBQAAAAAAAAA\nAOSLvTDpg4RJgRKHUCkAAABKqiFDhig0NNTumvXr1+vAgQMu6ghwLQKlAAAAAAAAAADAabmFSf2C\nCJMCJVF2qDS4XJkcdUKlAAAAKM4CAwM1atSoXNdNnjzZBd0ArkegFAAAAAAAAAAAOIUwKVC6+fp7\nqk1/QqUAAAAoWTp16qTatWvbXRMbG6s1a9a4qCPAdQiUAgAAAAAAAACAPCNMCkCSfAO8CJUCAACg\nxPnnP/+Z65qZM2cqLS3NBd0ArkOgFAAAAAAAAAAA5AlhUgA3I1QKAACAkqZBgwZq37693TWXL1/W\nvHnzXNQR4BoeVqvVWtRNAAAAAAAAAACA4oEwKQBb0q9lauPCeF25eD1HvUbjILXrFyUPRt0AAACg\nGLl06ZI6duxodwqpt7e3Vq5cqejoaBd2BhQe/rcNAAAAAAAAAAA4hDApAHuYVAoAAICSJCwsTIMG\nDbK7xmKxaNq0aS7qCCh8BEoBAAAAAAAAAECuCJMCcAShUgAAAJQkjz32mCpXrmx3zebNm7Vnzx4X\ndQQULgKlAAAAAAAAAADALsKkAPKCUCkAAABKCm9vb40fPz7XdVOmTHFBN0DhI1AKAAAAAAAAAABs\nIkwKwBnZodKgMEKlAAAAKN5at26tO++80+6a48ePa9WqVS7qCCg8Hlar1VrUTQAAAAAAAAAAAPdj\nzZK+IEwKIB/SkjO1YWG8ki9dz1Gv0ThI7fpHycOjiBoDAAAA8iAuLk49evSQxWKxuSYsLEyrV6+W\nv7+/CzsDChaBUgAAAAAAgAKWlcW4JQDFk6cnh1rhT9Ysaf2i33ViX3KOOmFSAHllK1Ra+/ayerBv\nJKFSAAAAFAszZszQkiVL7K4ZNGiQhg0b5qKOgIJHoBQAAAAAAKCAJSQkFHULAOCUyMjIom4BboIw\nKYCCRqgUAAAAxV1ycrIeeeQRXblyxeYaHx8frVq1ShERES7sDCg4vN0cAAAAAAAAAADcYCtMGhjq\nTZgUgNP8grz0YP/KCgork6N+dM9VbViaIEbgAAAAwN0FBQVp+PDhdtdkZGTo7bffdlFHQMEjUAoA\nAAAAAAAAACTZD5O26UeYFED+ECoFAABAcde1a1dVqVLF7prPP/9cx48fd1FHQMEiUAoAAAAAAAAA\nAHINkwYEexdRZwBKEkKlAAAAKM68vLw0ZswYu2usVqumTp3qoo6AgkWgFAAAAAAAAACAUo4wKQBX\nIlQKAACA4uyee+5Ro0aN7K7ZvXu3vv/+exd1BBQcAqUAAAAAAAAAAJRihEkBFAVCpQAAACjOnnvu\nuVzXTJ8+XZmZmS7oBig4BEoBAAAAAAAAACilCJMCKErZodLA0JzPNYRKAQAA4O7q1q2rhx9+2O6a\n06dPa+XKlS7qCCgYBEoBAAAAAAAAACiFCJMCcAd+QV5q049QKQAAAIqfUaNGycfHx+6at99+W6mp\nqS7qCMg/AqUAAAAAAAAAAJQyhEkBuJOAYG9CpQAAACh2IiIi1KdPH7trrly5ooULF7qoIyD/CJQC\nAAAAAAAAAFCKECYF4I4IlQIAAKA4GjBggIKDg+2uWbRokRITE13UEZA/HlYr//sFAAAAAABQkBIS\nEoq6BQAlTFJSksaNG6ezZ8/mqN9///367rvvZLFYbtS8vb314osv6rbbbsvzfSIjI/PdK9wbYVIA\n7u7aFYs2LopXymVLjnrt28vqwb6R8vAoosYAAAAAGz7++GO99tprdtd07txZEyZMcFFHgPMIlAIA\nAAAAABQwAqUAClJGRoYmTJign3/+OUe9ZcuW+uc//6mNGzdqxowZOR4LDAzU1KlTVaVKlTzdi0Bp\nyUaYFHBOVlaWDh8+oMOHD+jIkQOKj/9VyclXdfXqFVks1xUYGKTAwCAFB4eqRo06qlu3gerXv02V\nKsUUdevFFqFSAAAAFCeZmZnq0aOHTp8+bXONh4eHPv30U1WtWtWFnQF5R6AUAAAAAACggBEoBVCQ\npkyZos2bN+eo1ahRQ6+99pr8/PwkSfPnz9eKFStyrImIiNDrr7+u0NBQh+9FoLTkslql9QsJkwJ5\nkZR0WevXr9IXX6zQ77+fyfP1DRv+TX//ezfdfXcbeXvzPZZXhEoBAABQnHz77bcaN26c3TWtW7c2\nvCkYcDcESgEAAAAAAAoYgVIABeWTTz7RggULctQCAwM1a9YsRURE3KhlZWXphRde0P79+3OsrV+/\nvl555RV5eXk5dL+SGiht2rSpoXb77bfrmWeeUZ06dYqgI9eyWqUNSxN0dM/VHHXCpIBt33zzpd55\nZ4qSki7ne6+aNevomWcmqkaN2gXQWelCqBQAAADFSf/+/Q0nzPzV/Pnz1bhxYxd1BOSdZ1E3AAAA\nAAAAAMD9ffPNN2rfvv2Nj6VLlxZ1SyVebGyslixZYqiPGDEiR5hUkjw9PfX0008rMDAwR/3nn3/W\nhx9+WKh9Fld79uxR3759NWnSJJ05k/fJg8UFYdKS5+uv16lt26Y3PhYvnlPULZUoFotFkydP0OTJ\nLxRImFSSjh+P1ejR/bRu3aoC2a80CQj+47nKv2zO56qje65qw9IEMTYHAAAA7mTMmDG5rpkyZYoL\nOgGcR6AUAAAAAAAAQK6OHj1a1C2UKqmpqZoyZYoslpwT2Vq3bq17773X9JqIiAgNGzbMUP/www91\n6NChQumzJFi7dq0eeeSREhkstRUm9S9LmLQ4i421P+0GzrNYLHr11Qn65pv1hbL3jBkvacOGtQW+\nd0kXEOytBwcQKgUAAID7a9KkiVq1amV3zZEjR/TVV1+5qCMg73i1CAAAAAAAAECujh07VtQtlCrv\nvvuuzp49m6MWFhamkSNH2r3u/vvv144dO7R169YbtaysLE2ZMkXvvPOO/Pz8CqXfkmDt2rVau3at\nOnTooCFDhqhixYpF3VK+2AuTPjiAMGlxdvQoAfHC8t57b+q77zbafDw8vLzuv/9hNWz4N1WrVlNl\nywbL19dPKSnJunTpoo4dO6zdu7fr++83Gd4QkG369P+oatUaql27XmH9NkqkwJA/nrs2LIhX6tU/\n/2yzn+Me7BspD4+i6g4AAAD408iRI3O8LmPmzTff1D333CNfX18XdQU4jgmlAAAAAAAAAOzKzMzU\nL7/8UtRtlBqxsbH68ssvDfV+/fopODg41+sHDRokHx+fHLVz587p448/LrAeS7KSMLE0tzBpYAhh\n0uIqMzNTJ07EFnUbJdKRIwe1YsUy08f8/Pw0YsSzWrx4rQYPHqPmze9WVFRFBQYGydvbWyEhoapW\nrYYefLCD/vGP/2rx4s91991tTPfKysrSO+9MkZWxmnmWHSq1NalU/JECAADADdSuXVsPPfSQ3TVn\nz57ldRq4LQKlAAAAAAAAAOz69ddflZ6eXtRtlApWq1Vz5swx1KtXr642bczDSX8VERGhzp07G+or\nV67U77//nu8ei7PsAJcjQa7iGiwlTFqynTp1gufjQvLmm5NNnxtCQkI1c+ZCderUS97ejn3/hIeX\n0wsvTNZjjw0xffzQof364Ydt+eq3tLIXKt300TlCpQAAAHALw4cPz3XN/PnzlZqa6oJugLwhUAoA\nAAAAAADALo67d51NmzYpNtY4fXDw4MHy9HT85dyePXsqNDQ0Ry0jI0Pz5s3Ld48lgcf/zkXOS7B0\n7ty5unr1aq7rixJh0pKP4+4Lx5EjB3X8+BFD3dvbW//97yxVq1bDqX0ff3yI7rrrAdPHtm3b7NSe\nsB0qPbzzCqFSAAAAuIWYmBh16dLF7prk5GQtWLDARR0BjiNQCgAAAAAAAMCuo0ePFnULpUJmZqaW\nLTMet9yoUSM1btw4T3v5+/ure/fuhvr27dt1/Phxp3ssafISLJ07d646duzotsFSwqSlQ2zsz0Xd\nQom0fv0q03q3bo+pVq26+dp70KAxpvWdO7fka9/SjlApAAAA3N3QoUPl4+Njd83SpUt1+fJlF3UE\nOIZXkAAAAAAAAFBsJCUlafv27frxxx/166+/KjExUWlpafLx8VHZsmVVrlw51atXT7fddpuaNGly\nIyxWUKxWqw4fPqwff/xRR48e1dmzZ3Xp0iWlp6fL09NT/v7+KleunCpVqqRbb71Vd9xxh6Kjowu0\nh6LAhFLX2Lp1qxISEgz1Tp06ObXfQw89pKVLlxqOT1u5cqWeffZZp/YsqW4Oltp73khOTtbcuXO1\nbNky9enTR48++qjKli3rqjZtIkxadFJSkrVjx3c6duywfvnlmM6dO6tr11J07VqKrFar/Pz8FRAQ\nqKioSoqJqaZ69RqqWbNWCg0Nc+p+x44VzoTSjIwM7d27U/v379Hx40d07txZXb58SenpafL09JSf\nn7/Cw8srKqqSateup8aNm6lBg9vyNDk5P2Jjf9a2bZsVG/uz4uN/1dWrV5SRkS4fH1+Fh5dTlSq3\nqHHjprrnnodUrlz5PO+/a9dWQ83b21tduvTJd+9RURVVt24DHTlyMEc9MfGC0tLS5Ofnl+97lFbZ\nodINC+KVetVyo3545xVJ0gO9IqSC/U9BAAAAwGHly5dXz549tWTJEptr0tLSNH/+fI0bN86FnQH2\neVgdees1AAAAAAAAHGYWCINtkyZN0g8//JCj1rZtW40ePfrGr9PS0rR06VJ9/vnnSk9Pd2jfKlWq\naODAgbrjjjvy3aPFYtH69eu1YsWKPP/91q9fX7169dLtt9/u8DUbN27U66+/bqjXrFlT06dPl5eX\nV556yJaUlKRhw4bpypUrhsdeeeUVNWrUSOnp6eratatT+0tSw4YNNXnyZKevL83Gjh1rCO9GR0dr\n7ty5Toe25syZo9WrV+eoeXl5ad68eYqIiDCsj4yMdOo+7q5p06aScg+MZnN0XVBQUJEHSwmTFo3T\np09q0aLZ2rHjO12/fj1P13p4eKhZs5bq1WugGjS4zea69PR0PfJIK6d7bNSoiaZMmWt3TWLiRX36\n6WKtX79KKSnJedo/PLy8OnXqpU6desvf3z/P/Q0a1F1xcady1B56qKPGjZt449fHj8fqnXem6ODB\nnxza09PTUw891FEDBz7lcGj34sUL6tOnnaHetGkL/fe/bzq0R25mzXpVa9Z8YqgvWPCZoqMrFcg9\nSrOUJIu+ei9OaSmZOer17gwmVAoAAIAilZycrHbt2iktLc3mGm9vb61du1bly+f9zXFAYeDIewAA\nAAAAABSpwMBAQ+3atWs3Pv/99981ZswYrVixwuEwqSSdPn1aL774oj766KN89Xf8+HGNGjVK77zz\njlNh4Z9//ln//ve/9corryglJcWha9q0aaOWLVua9rJqlfmxvI6YO3euaZi0a9euatSokdP7Iv9+\n/vln00mwHTp0yNcEwEceecRQy8zM1Jo1a5zeszS4eWKpvZkM2RNLO3bsqLlz5+rq1as21xYGwqSu\nZ7VatXDhOxo+/FFt2bIpz2HS7D127dqqceMG6Y03XlFGRkYhdJq7DRvWatCgblq+fEmew6TSHxM2\n33//LQ0e3F179+7M8/VBQcYQ9uXLl258/vXX6zR27ACHw6SSlJWVpfXrP9Pw4Y8aJoLacuZMnCIj\noxUYGJSjXqdOfYfvm5uQEPNwa3Kya58zSqrsSaV+gTnfcHN45xVt+uicxGgdAAAAFJGgoCANGDDA\n7hqLxaJ58+a5qCMgdwRKAQAAAAAAUKR8fHwMtewjus+fP6/nn39e8fHxTu+/aNEibdmyxalrt2/f\nrueee06nT592+v7Zvv/+e40bN04XLlxwaP1TTz2l0NBQQ33p0qX6/fff83z/vXv3avPmzYZ6tWrV\n9Pjjj+d5PxSsb7/91lDz8PDQ3Xffna99o6OjVadOHUP9+++/txuUxB88PDxyhEttKYpgKWFS17Na\nrZox4yUtWzZfFosl9wsc8PnnyzVx4tMFtp+j5s6doalTJzkVJP2r8+cT9MILo7RuXd7e8ODj42uo\nXbv2Rz/bt3+rKVMmOhXYlf4Iuz7//AgdPx6b69qGDf+mRYvWaMWKzVq3bpc+/fRrvf/+qgI57j5b\nerr5NKK/hljhvKCwMoRKAQAA4Jb69u2rkJAQu2tWrlzp1Ot9QGHgFSUAAAAAAAAUKW9v40tU6enp\nslgseuWVV3T+/Pkb9cDAQDVr1kzVqlVTWNgf076uXLmiU6dOaffu3UpKSjK9x9tvv62mTZvm6Uje\nH3/8UZMnT7YZ8mnYsKGaN2+umJgYhYWFKSMjQ5cuXdLhw4e1a9cuxcXFGa6Ji4vTv/71L02dOtV0\nMuvNQkJCNHbsWE2aNClHPT09XbNmzdJLL73k8O8lLS1Nb731lqHu7e2t8ePHm4Z64TpZWVnatm2b\noX7rrbcqPDw83/u3bNlSsbE5Q1Xnzp1TbGys6tatm+/9S4ubg6XZn/9VdrB0zZo1Gjp0qDp06FAo\nvRAmLRpffLFC69d/ZvpYaGiYmjVrperVaykyMlr+/gGSpGvXUvT777/p6NFD2r17u65dM06q3rt3\np957700NGfJ0ofafbdGi2Vq+fInpY15eXmrYsIlatLhH0dGVFR5eXllZmbp06aJOnz6pbds26/Dh\nA4brsrKyNHPmfxUcHKJWre5zqA+zn//XrqXowoVzmjp1krKysm7Uw8PL6fbbW6hatZoKDg5RZmam\nLl48r4MHf9RPP/1gGvhOTb2m//xnvObM+djhn/+enp4qWzZYZcsGO7TeUefPm084DwkxvnEEzssO\nlW5YEK+0lMwb9cM7/5jO/kCvCMn86RsAAAAoNP7+/ho8eLCmTp1qc01mZqbmzp2rf//73y7sDDDH\nq0oAAAAAAAAoUmbHeWdkZGj58uU3QnB+fn569NFH1alTJ5UpU8Z0n4yMDC1btkyffPKJ4bErV67o\nu+++U9u2bR3q6cqVK5o+fbppmLRq1aoaOXKk6tc3Pwq3RYsWGjhwoL755hvNmTNHyck5p7+dPn1a\ns2fP1rhx43Lto1mzZmrXrp3Wr1+fo/7jjz9q48aNatOmjUO/H1tTTR9//HFVr149R83X11eLFy++\n8evz58/rmWeeMVzbtWtXdenSxVA3CwjBvoMHD+rSpUuGeosWLQpk/1atWun999831Lds2UKg1AmO\nBEvPnj2rSZMmac6cOYUSLN388TmTMKkXYdJClJKSrPfem2Woe3l56YknRqlTp142fz5lu3btmlav\n/kiLF88x/Hz57LOP1LFjT0VHV7pR8/X11bJlfz7/X7iQoNGj+xv27dbtMXXr9pihbtbPnj07tHSp\n+VGKDRrcprFj/6WYmKqmjzdvfrd69uyvQ4f2a/r0/ygu7lSOx61Wq6ZNe1F16tRX+fIRpnvczMvL\n7A0laVqw4O0bR8EHBZXVkCFPq02b9vLy8jKsl6SEhLOaOnWS9u/fY/rY0qXvatCg0bn2U1isVqt+\n+mmXoV6lSnUmlBYCQqUAAABwR926ddPixYuVkGD+ZjNJ+vzzzzVw4EDFxMS4sDPAiCPvAQAAAAAA\nUKTMAqUJCQn66KOPJEnBwcF69dVX1b17d7thHR8fHw0YMEDt27c3ffzrr792uKfZs2crMTHRUK9X\nr56mTJliM0yazcPDQ/fff79ee+21G5NU/9rLgQPGCW9mBg8erOjoaEN9/vz5unz5cq7X//LLL/rs\nM+NEvQYNGqhr166m14SHh9/4CA01n57m5+eXY132R3BwwU51Kw1++OEH03rz5s0LZP/o6GhVqVLF\n4fvCMTcHS23JDpZ27NhRa9euLZD7frv8vH7ecSVH7Y8waQxh0kK0a9f3N0KONxs16h/q3v2xXMOk\nkhQQEKDevQfq5ZdnGdZbLBatWvWB4Zpy5crf+AgJMf48kf6YdnPzuuyP4OCcRypev35ds2ZNNt3j\nrrse0NSp79oMk97s1lsb6Y03Fqp69ZqGx1JSkvX++8aJ2GbMAtkJCWe1cePnkv6Y3jl9+ny1bfuI\nzTCpJEVGRuvVV99Ry5b3mj6+Zs3HSkrK/edlYdmyZZMuXza+aaBJkzuLoJvSITtU6uOf8+vm8M4r\n2vTROcn20zYAAABQKMqUKaNhw4bZXZOZmal3333XRR0BthEoBQAAAAAAgNu5fPmy0tPT5enpqYkT\nJ6pmTWNoxZa+ffvK19fXUD927JgyMzNNrsjpyJEj+vbbbw318PBwTZw4Mdej6m9WtWpV0+mekrRk\niflxw3/l5+encePGGYK3V65cyfVF5qysLL3xxhuG33dAQICeeeYZ0zAvXO/w4cOGWkhIiGmQ2Fn1\n6tUz1H777TclJSUV2D1Kq7wGS9esWeP0vbauvqAD3+f8OyNM6ho7d35vqEVEROnhhzvnea/GjZuq\nZ0/jpNGdO7c41ZujNmxYqzNn4g316tVr6tln/2Nz4q6ZgIBAvfji66Y/b7/+ep0SEs7muofZzyCL\nxXLje+n//u8lVa16i0P9eHp66tlnX1RERJThsbS0NH3zzXqTqwpfamqqFiwwBmw9PDzUoUOPIuio\n9AgKK6MH+xMqBQAAgPto3769qlWrZnfNunXrFBcX56KOAHO8YgwAAAAAAAC31blz5zwfyR0SEqJG\njRoZ6unp6frtt99yvX7dunWm9REjRqhs2bJ56kWSmjRpotatWxvqBw8e1MmTJx3ao169eurRwxg8\n2bx5s3bv3m3zutWrV+vYsWOG+tChQxUZGenQvVG4rl+/ruPHjxvqBX0UvVmgVPojQI2C4eHhYTdU\nKv0RLH3xxRedmli6dfUF/fhNzimLhEld5/z53w21evUaOr1f+/bdVKlSFTVpcqcefriz+vcfrn79\nhjn0xgdnrV79kWl9wICRpsHQ3ERGRqtdO2OgNisrS+vXr8rzfjdr3vxu3X573qY0BwQEqnfvgaaP\nbdmyMV/9OMNqtWrGjJf022/Gfwy+7752Dk2DRf4ElydUCgAAAPfh6emZ65RSq9Wqt95y7NQHoLAQ\nKAUAAAAAAIBb8vLyUpcuXZy6tnbt2qb1hIQEu9clJydryxbjhLiYmBi1aNHCqV4k6ZFHHjGtm01C\ntaVPnz6mk1rfeustpaWlGernzp3T4sWLDfVWrVqpTZs2Dt8XhevEiRO6fv26oW4rAOqsOnXqmNbN\npqPCeY5MK5VyTiy1FwrP9u3y84RJi9ilS4mGmqen7WPYc1OuXAW9994KvfLKWxo7doL69HlS99//\nsN2j3fPj1KkTOnnSGF6vVq2Gmje/y+l9O3d+1LS+Zcsmp/eUpK5d+zp13X33tZO3t/F74vDhA0pJ\nSc5XT3lhsVg0Y8ZL2rz5S8Nj4eHlNXz4eJf1Utr9GSrN+U+ihEoBAABQFB544AGbr9Fk27hxo375\n5RcXdQQYESgFAAAAAACAW2ratKnCw8OdurZixYqm9ZSUFLvX7dy5U+np6YZ6u3btnOojW/369RUR\nEWGo//DDDw7v4e3trXHjxsnHxydH3VZw9O233zYETcPDwzVy5EiH74nCd+rUKdP6Lbc4dsyzo2Ji\nYkwnENq6P/InL8HSYcOGaejQoTaDpd8uP88x927ALOh56pQxoOmufvhhq2m9efO787VvxYqVValS\njKEeF3dKFy6cc2rP8uUj1KhRE6euDQgIVP36txnqmZmZOn7cNROZExMv6oUXRmn9+s8Mj/n6+mrC\nhFcVHBzikl7wh+DyZdSmH6FSAAAAFD0PDw8NGTIk13VMKUVRIlAKAAAAAAAAt9SgQQOnrw0ODjat\nX7t2ze51R48eNa03btzY6V6yNWxoPBr51KlTSk52fGJalSpVNGDAAEN99erVOXrfsmWLaVh1zJgx\nCgkhxOJOfv/deIy2JEVFRRXofTw8PExDzblN7UX+OBos3bNnj2mwdMvKC4RJ3URUlPGNCidPHtfW\nrd8UQTd5d/DgT6b1Zs1a5Xvvv/3tTtP6oUP7ndzvjhvfO8649dZGpvXjx2Od3tNRu3dv14gRj+qn\nn4w/gwMCAvXSS2+qfv38/zcF8i6kgo/9UCkAAADgIvfcc0+uU0q//fZbHTnimjfFAX/FK04AAAAA\nAABwS2bHuzvqr1M8s5kdLX4zs0Cpv7+/qlat6nQv2erVq6dNm4xHAJ84cSJPgdVHHnlEO3fu1L59\n+27UsrKy9MYbb2jGjBlKS0vTnDlzDNf9/e9/V9OmTZ1rHoXGVqCzQoUKBX6vyMhIxcXF2b1/bGys\nrl+/rvT0dGVmZiorK0sWi0VZWVn5+txqtcpisdzYMzMz0+nPs7Ky5OXldePD09PT5q89PT1Nj792\ntZuDpfaCcnv27NGePXtUq1Yt3Vf/KWVcjMzxuF8QYdKi0rhxU+3aZZzyOXnyCxo9+p968MEORdCV\n406cMA9T1qhh/x8xHVGtWg3T+q+/npDUJs/71a3r/BtKJKlqVfMJz2fPxudrX3ssFosWLnxHH3+8\n0PTxihUra9Kk6TZ7g2tkh0o3LIjX9fSsG/XDO6/Iy9tD93Yv+J+9AAAAgJmRI0dq9OjRdte8/fbb\neuONN1zUEfAnXnUCAAAAAACAWwoLC3P6WlsBMntTAi0Wi06ePGmoV6hQQZ6e+T/oJzo62rQeHx+f\np0Cph4eHnn76aY0cOVIpKSk36idPntTKlSt19uxZXbp0Kcc1lSpV0pNPPulc4yhUZoHScuXK2QxF\n54fZhNL09HRdvnxZoaGhkqS+ffsW+H3xJ0eDpeWy7jKESX38PdWmX2XCpEXkgQfaa/HiuUpLS81R\nz8jI0NSpk7R27afq0KG7WrS4R0FBZYuoS3NpaWk6f974XBMeXl7+/v753j8qqpJp/bff4kzruYmJ\nqZ6fdhQZaZwmK0kJCWfzta86G/HdAAAgAElEQVQtFy+e18sv/8PmFNiWLe/V+PGTFBgYVCj3R96E\nVPDRA49X0sZFv8mS8Weo9ODWJHlIuodQKQAAAFygZcuWat68uXbs2GFzzbZt23TgwAHTU4+AwsSR\n9wAAAAAAAHBLgYGBLr1fcnKy6QTT/ARbb2brCHNbR57bU6FCBQ0fPtxQX7p0qb788sscNS8vL40b\nN05+fn55vg8K31/Dv9IfgdLCUL58eYd7QOGyFyZtUq2X6lZ8yFBv06+yyoaXKcy2YEdYWLhGjnzO\n5uNHjhzU1KmT1KvXg3ruuWH6+OOFOnbsiLKysmxe4yoXLpgf512xYuUC2T8qyjzAmZh4wan9IiLM\nf146KizM/Dn0ypXL+drXzIkTR/XUU4+bhkm9vb01bNg4TZw4lTCpmwmL8tX9fY1ftwe2JmnHFxeL\noCMAAACURkOHDs11zVtvveWCToCceCszAAAAAAAA3FJhTGi05+Zpnzfbt2+f2rdvX2j3TUpKcuq6\n++67Tzt27ND3339/o2YWiO3du7fq1Mn/kcYoHGlpaYZaYYV/fX19He4BRed4whbVjnpAfmWCc9Rj\nd17WHR2MU2bhOg891FFnzsTpgw/es7nGYrFo377d2rdvt6Q3FRRUVn/72x26/fYWuuOOVipXzvXT\nD5OSzEPjQUHBpvW8CggwD0vaum9uQkPD89OOzfBmcvLVfO37V6dPn9Rzzw013Tc6upL++c/Jql27\nXoHeEwXDapUObTcGjP0CvVTn9oL5vgAAAABy07BhQ7Vu3TrHa3t/tXv3bu3evVtNmzZ1YWco7ZhQ\nCgAAAAAAAOiPCaXF7b4jR45UeLjt4E2dOnXUq1cvp/dH4UtPTzfUbAU/88tWUNWsBxQNq9WqK6ln\ntG7fi0rNyBk2P/HTFe3d4NzERxScAQNGaPz4SQ4Hv5OTr2rLlk2aMeMl9enzsMaMGaBVqz7UlSvO\nvZnAGWlpqab1ggqv235uyXtY3cvLS/7+/vnsx/z6jIyCe667du2a/v3vsaZh0ttua6Y331xMmNSN\n7fgsQfFHcv73l1+gp7o+VUlhkUyCBgAAgOsMGzYs1zWzZs1yQSfAnwiUAgAAAAAAAJJSU80DN4XN\nbKqoo4KDg9WzZ0+bj/fu3VteXl5O74/C58pAKRNK3ZfVapUkeXh4SJKSUn/TF/v+ZQiVxu68rENb\nnZv6iILz4IMd9M47H6pNm/by9s7bQXBHjhzUO+9M1WOP/V1z585QSkrhv5nh+vUM07qt4GVe+fqa\nB0ozMszva0+ZMvkP89n6O7FYLPneO9vChW/r7NnfDPUmTe7U//t/M1W2LFMu3ZHVKm1blaBTB3MG\ngf0CvdRtVIzCo1w7HR8AAACoW7eu7r33XrtrDh48qB07drioI4BAKQAAAAAAAFCk8hNwSU1N1cqV\nK20+vmjRonwFVlG4bP3d+PgUTqDFVlCLr5Gi89cg6c2upp0zDZXu++YioVI3ULFiZT377ItasuQL\nDRnytOrWbZCn69PT07V8+RINGtRN+/btLqQusxm/vqQ/v/7yy9Y+Zl/XufHwyP8/W9nqx9OzYP5J\n7OLFC/r88+WGekRElCZMeLXQnsORP1artP2zBP1qGiatzGRSAAAAFJkRI0bkumb27Nku6AT4Q97e\nOgsAAAAAAACUULbCdg0aNFDnzp0L7b7Bwc5PMXv33XeVkJBg8/GTJ09q8eLFeuKJJ5y+BwpPmTJl\n5OHhYQg/OTPVzxGuDrDCNqvVKg8Pj1wDd1fTzmn9gYnqc8+bSk3OvFHf981FSdKtrcIKtU/kLiws\nXN269VW3bn118eIF7d69TXv2bNePP+5y6Fj7xMSL+uc/n9L//d9LuvvuNoXSo62fb84cSZ+XfZx5\nbimIY+kzMzNN63mdJmvLpk2fmz6fDh8+XoGBQQVyDxQswqQAAABwZ7fccovatGmjjRs32lyTPaW0\nefPmLuwMpRWBUgAAAAAAAEBSYGCgab1s2bJq0aKFi7vJ3Q8//KAvv/wy13UrVqzQHXfcoQYN8jY9\nD67h4+NjOPb+r78uKLb29fX1vfF5jRo15OPjI39/f3l4eMjLy0uenp7y8vIqks+9vb3l6elp+Nxi\nsSgrK0uZmZk3Psx+nb3utddeK5Q/07xyNEgqSeXKlVPFihUVGBioHmMra/mb8UpJIlTqzsqVK6+2\nbR9R27aPKCsrS8ePH9HevTu1Z892HTz4k7Kyskyvs1gsmjZtkqpWvUVVq95S4H0FBJj/fEtNTS2Q\n/dPSzPfx8/PP816ZmZmyWCz5Cn/a6sffP8DpPW+2Z4/xqMno6Epq2dL+MZUoGoRJAQAAUBwMGTJE\nmzZtsnuSxOzZswmUwiUIlAIAAAAAAACSQkNDTespKSku7iR3SUlJmjlzpqF+77336vz58/r5559v\n1KxWq6ZNm6a33npLAQEFE6ZBwfH19XVZoDQtzXyKoJ+f343PP/roo0K5d1Fzh0Bpdpg0Nx06dNCQ\nIUNUsWLFHPXuY2L06cw4QqXFhKenp2rXvlW1a9+q3r0HKinpsjZsWKuVK5fpwoVzhvVpaWmaN2+m\n/t//Mz6351dIiPnXx9WruU9QdURy8lXTelhYOaf2u3YtRcHBIU73k5KSbFovW9b5ieA3O3nymKF2\n++3u98YTECYFAABA8XHLLbeobdu2Wr9+vc01TCmFq3gWdQMAAAAAAACAOwgJCckxqTHbpUuXiqAb\n+9566y1DX6GhoRo6dKhGjx5tOGb43Llzmj17titbhINuDnNmsxX8zC9HJpSi4GVPF8ktTNqhQwet\nXr1akyZNMoRJJalsmLe6j4lRYEjOORH7vrmoQ1vd73kKOYWEhKp798c0f/4KdejQ3XTNrl1bFR9/\nusDvXaFCpDw9jf8cdOZMXIHsb2uf8uUjnNovIeFsftpRYuIF07qzAdebWSwWJSVdNtSjoyvne28U\nMMKkAAAAKGaGDh2a62sHvL4HVyBQCgAAAAAAAOiPsFflysZAyG+//VZoAT9nbNq0SVu3bjXUhw8f\nruDgYFWuXFl9+vQxvW7btm2uaBF5EBZmnBx48eLFQrnXhQu2QlZMtywMBRUkvVnZMG91G12ZUGkx\n5ufnp1GjntdDD3U0fXz37oJ/ni5TpoyiooxfW5cvX7I5zTMvzpyJN63HxFRzcr/8BV3PnTMPpEZF\nVcrXvpLk7e2tL7/cbfjo3v2xfO+NAmSVdqw9ZwiT+gZ4EiYFAACA24qJiVH79u3trjl48KC2b9/u\noo5QWhEoBQAAAAAAAP6nVq1ahlpWVpZ+/fXXIujG6Pz585ozZ46h3rp1a7Vu3frGr7t27aqaNWsa\n1s2aNcstJ66WZlFRUYbaxYsXdf369QK/17lzxmO2fX19FRoaWuD3Ks0KI0h6s+BwQqUlwYABI02/\nRuLiThXK/WrXvtW0Hhv7c773PnEi1rReo0Ydp/b79dcT+WnH5p+hswFXFDP/C5Oe3HclR9k3wFNd\nnyJMCgAAAPf2xBNP5Pp6gtlrg0BBIlAKAAAAAAAA/E/Dhg1N62YTQV3NarVqxowZSklJyVEPDg7W\n8OHDc9S8vLw0duxYeXvnDJwlJSVp5syZhd4rHBcZGWlaNwt/5ldCQoKhFhHh3JHUMHIkSBoUFKTB\ngwc7FSS9GaHS4q9cufKqVKmKoX7livE49YLQsGET03p+J6JarVbt2WOcjuPl5aV69Ro5teeePTvy\n1dORIwdN6zVr1s3XvigGcgmTlov2KaLGAAAAAMdUqVJFf//73+2uYUopChuBUgAAAAAAAOB/mjZt\naghhStKWLVuUmZmZr71/+OEHjRw5UosXL1ZsbOyN8Jmj1qxZo59++slQHzJkiOmEyerVq6tHjx6m\nfXzxxRd5ujcKj9mEUsk8/JkfVqvVNKRq6/5wXF6CpGvWrNHQoUOdDpLejFCp6yUmXtSuXVu1bt2q\nAtmvTBnjpMSAgMAC2fuv7rzzLtP69u3fKisry+l9Dx3ar6QkYwi2UaPb5e/v79SesbE/69KlRKeu\nTUtL08GDPxrqwcEhqlr1Fqf2RDFBmBQAAAAlxJNPPsmUUhQpAqUAAAAAAADA/wQFBalZs2aG+rlz\n57Ru3bp87f3pp5/q1KlT+vDDD/XMM8+oX79++vjjjx26Ni4uTgsWLDDUmzVrpvvuu8/mdb169VKV\nKsYJePPmzdOZM2ccb95EfgO2+EPVqlVN6ydO5O/I57+Kj49Xenq6w/dH7pwJkpYtW7ZAeyBUWviS\nki7rX/8aq0cfbadHH22rf/1rjGbMeElnz/6Wr32zsrJ0/rwxOB4eXj7PeznyfFyhQqQaNTJOKT1z\nJl5btmzK8z2zffLJItP6ffe1c3pPq9WqlSuXOXXt1q1fmz7X3X57C3l68k9iJRZhUgAAAJQgTClF\nUeP/ngEAAAAAAICbdOnSxbS+ZMkSnT9/3qk916xZo4MHcx7Bm5iY6FC4zGKxaPr06YaATGBgoJ56\n6im715YpU0Zjx441BN7S09M1depUh0JIXl5epvWkpKRcr0XuatSoIR8fY9DlyJEjBXqf2NhY03q9\nevUK9D6lgTsESW9GqLRwhYSE6tdfTygx8UKO+nvvvZmvfX/66QclJ1811GvVsv09aTZBW5IuX3bs\n77lLlz6m9UWLZis1NdWhPW528OBP2r79W0M9NDRM997bNs/73Wz16o914YJxqrI9169f14cfvm/6\nWH77gRsjTAoAAIASiCmlKEoESgEAAAAAAICb1K9f33RK6dWrVzVhwgRdvmw82teer7/+WnPnzjXU\nw8PD7U4XzfbRRx/p6NGjhvqTTz6p8uVzn2RXp04dderUyVCPjY11aEJqQECAad1WQBF5U6ZMGdWs\nWdNQL+hA6eHDh03rBEod525B0psRKi1cZmHE777bqKVL5zm139WrV/T221MMdX//AN1+ewub1wUE\nBJrWY2MPmtb/qkWLe1SnTn1DPT7+V02Z8m9lZWU5tI/0x2TT//xnvOljffoMkq+vr8N7mUlNvaaJ\nE5/OU9D1nXem6vTpk4Z6dHQlNWvWMl/9ZNu2bbPatm1q+BgzZkCB7I+8I0wKAACAkqhKlSp6+OGH\n7a5hSikKC4FSAAAAAAAA4C+GDx+uoKAgQz0+Pl6jRo3Sli1bct3j8uXLeuONNzRt2jTTkM6IESPk\n5+dnd49jx47po48+MtT/9re/qW1bx6etPf7444qOjjbUP/zwQx07dszutQEBAQoJCTHUT5486dCf\nA3JnFuq8fPmyzp49W2D3MAuoVqpUyfTvFjm5c5D0ZoRKC0/37o8rMND4M2HRotn617/G6NgxxwPg\ne/fu1NNPP6G4uFOGxzp16mU3iBkQEKiQkFBD/Zdfjum77zbmem8PDw+NHv1P00mnW7d+o//7v2FK\nSMj9eefrr9dp7NgBSkoyvsGibt0G6tChe6572BIVVVGNGjWRJB0/HqsxY/rryBH7gdm0tDTNmPGS\nPv98uenjffsOtjltG8XbD+vOEyYFAABAiTVo0KBcp5TOmjXLRd2gNDE/HwUAAAAAAAAoxSIjIzV+\n/Hi99NJLslgsOR5LTEzU5MmTtXDhQrVo0ULVq1dXWFiYvL29lZKSovj4eB06dEh79uwxXJutY8eO\natHC9hQ66Y9j6adNm2Y4lt7Pz0+jRo3K0+/Hz89Po0eP1j/+8Y8cdYvFomnTpmnGjBl2w621atXS\n7t27DfVXX31VGzduVK1ateTh4aHExETFxcWpd+/eatKkSZ56LM2aNm2q5cuNQaidO3eqc+fO+d4/\nISFBp04Zw2tNmzbN994lmdVqlYeHR65B0kcffVR9+vQpkhDpX2WHSpe/Ea+UpD+ff/Z9c1FeZTxU\n5w5jGBG5Cw4O0bBh4zRt2ouGx3bt2qpdu7YqJqaaGjZsopiYagoPLy8/P39JVqWmpurixfOKjz+l\nvXt32gxsVq5cVX36DMq1lzp16mvXrq2G+ssv/0MbNqxRrVr15OHhoYsXLygu7qT69Bmk229vfmNd\nzZp1NGLEs3rjjVcMe+zfv1dPPNFFTZu2VIsW9ygyMlohIWG6di1Fly8n6vDhA9q27RudORNv2lt4\neHm98MLkfIU3MzLSNXjw03r66YGyWCz69ddfNHbsQNWv31gtW96nmJhqCgsrp6ysTF28eF779u3W\nt99+pUuXEk33a9y4qdq0ae90P3BfP6w7r+N7knLUCJMCAACgJKlSpYratWundevW2VwTGxurHTt2\nqHnz5jbXAHlFoBQAAAAAAAAw0axZMz333HOaNm2a0tPTDY+fPXtWK1asyPO+DzzwgIYOHZrrugUL\nFiguLs5QHzhwoCIjI/N830aNGqldu3Zav359jnpcXJzef/99DR8+3Oa19913n2mg1Gq1avfu3YbH\nzP68YFuDBg0UFhamS5dyTpHctm1bgQRKt241hs8k6a677sr33iWRI0HSqKgo9enTRx07dnSLIOnN\nskOln86I07WrfwbS9351QZIIlTrpoYc66syZOH3wwXumj8fFnTKdOuqIypWr6pVX3nLomPj77nvY\nNFBqtVpvhFtvlp6eZljbvn03paQka/78Nw2PWSwW7djxnXbs+C4PvwMpIiJKL788SxERUXm6zuz+\ntWvX0+DBY/XOO1Ml/fF7O3jwJx08+FOe9oqKqqjnn/9vrhN9UPwQJgUAAEBpMXjwYK1fv/7G6Slm\n5s6dS6AUBYoj7wEAAAAAAAAbWrVqpddee01VqlTJ916+vr4aPny4nnnmmVzDLfv379fq1asN9QYN\nGqh9e+cnrT3xxBMqX768ob527Vrt3bvX5nV33XWXatWq5fR9YZ+np6datmxpqB86dMgQMnXGtm3b\nDLUKFSqobt26+d67JHHkaPuoqChNnDhRa9eudZuppGayQ6UBZXNOitz71QXF7jIeUw7HDBgwQuPH\nT7I70Tmv7rrrAU2bNs/hIOY99zyo2rVvzfd9e/bsr4kTpyokJP8B4+bN79asWUsUE1Mt33tlZWVJ\nkjp37q1hw8Y5Pe20WrUaeu21OQoPL5fvnuBeCJMCAACgNMmeUmrP/v37Td8IDjiLQCkAAAAAAABg\nR82aNfXmm29qxIgRqlixYp6v9/f3V8eOHTVv3jx16NAh1/UpKSl6/fXXDXVfX1+NHj06X5PWAgMD\n9dRTT5k+9vrrr+vq1aumj3l5eWnChAmqVi3/YSGYu/feew01q9WqLVu25GvfhIQEHT582FC/6667\nmNr3P3kNknbs2NFVreVLSPkyhEoLwYMPdtCCBavVs2d/lS0b7NQeXl5eataspV599R1NmPCqQkPD\n8nTtxIlTVb16TafufbOWLe/Vu+9+ql69BigwMCjP1zdq1ET//e+bevHF6QUSTJWUY+pOly6P6vXX\n31ODBrc5fL2vr6969uyvmTMXKjIyukB6gvsgTAoAAIDSaPDgwbm+hjNv3jwXdYPSwMNqbyYuAAAA\nAAAA8iwhIaGoW0Ahio2N1d69e3X06FGdPXtWiYmJSktLk4eHh/z9/RUYGKiKFSuqWrVqatiwoW67\n7Tb5+JSMkMP169f11VdfaevWrTp58qRSUlLk4+OjsmXLKjg4WNWrV1fNmjXVunVrhYZyrHZejR07\nVseOHctRi46O1rvvvut0+PPdd9/VqlWrctS8vLz07rvvKjIy0rDerFYSNG3aVNKfx9k7EiKV/giS\nDh06tNiESM0kXbiu5W/E69rVzBz1Jg+VV507+D7Nj8zMTB0+fED79u3W6dMnFR//qxITLyg9PU1p\naany8PBQYGCQ/P0DFBERpVtuqa2aNeuqWbNWeQqRmrl+/bq+/PIzbdmySSdPHlNy8lX5+PiqbNlg\nBQeHqkaN2qpVq55at35AYWHhue6XkZGhPXu2a//+PTp+/IjOnv1NV68mKT09Xd7e3goICFSFCpGK\niamuevUa6s4771JUVN7fZHGzSZPGafv2b3PUAgODtGLFZsPaY8eOaPv2zTp8+IDi4k7d6M3X10/l\nypVXtWo11aTJnbrnnoecDvrCvREmBQAAQGk2YcIErV+/3u6a+fPnq3Hjxi7qCCUZgVIAAAAAAIAC\nRqAUgDO+++47vfrqq4b6xIkTdccdd+R5v9TUVPXv318pKSk56vfee6+effZZ02tKeqDUUSUhSHoz\nQqVwR3kJlKJ0I0wKAACA0u706dPq1q2b7MX8mjdvrlmzZrmwK5RUHHkPAAAAAAAAAG6gVatWpoHO\nv04YddSGDRsMYVJJ6tKli1P7lQbF8Wh7R4SUL6NuoysroKxXjvrery4odtflIuoKAHK356sLhEkB\nAABQ6lWpUkVt2rSxu2bHjh06cuSIizpCSUagFAAAAAAAAADcgJeXl/r06WOo79u3T/v378/TXmlp\nafrkk08M9RYtWqhmzZpO91hSldQg6c0IlQIobvZ8dUFH//L8RJgUAAAApdWgQYNyXTN79mwXdIKS\njkApAAAAAAAAALiJBx54QLVr1zbU582bp6ysLIf3+eSTT5SYmJij5uPj49A/PpQmtWrVKvFB0psR\nKgVQXJiFSX38CJMCAACg9KpRo4buvfdeu2u+//57ppQi3wiUAgAAAAAAAICb8PDw0LBhwwz1EydO\naNOmTQ7tcf78ea1cudJQ79q1q6KiovLdY3G0e/du048PPvigVARJb0aoFIC7sxUm7TKyEmFSAAAA\nlGqOvFF43rx5LugEJRmBUgAAAAAAAABwI3Xq1FHbtm0N9YULF+rKlSu5Xj9v3jylp6fnqEVERKhH\njx4F1iOKN0KlANyVvTBphcq+RdQVAAAA4B7q1q2rVq1a2V2zefNmnThxwkUdoSQiUAoAAAAAAADg\n/7N352FZ1fn/x18ssggqKC6opZaV45KmWKipTIii4oJQqTlpmmWW862076+abJxv67TY1LRplk6p\nmaKAoqK5YC6VuVVaouSGigsqyi7b748G85YbBO5zcy88H9fFdcnnnPM+b70BP5zzuj8HdmbixIkK\nDAw0Gbtw4YI++OCDCo/buHGjtmzZYjLm6uqqadOmycvLy/A+4bhKQ6VePoRKAdgHwqQAAADA9T32\n2GPX3eeTTz6pgU7grAiUAgAAAAAAAICd8fb21jPPPCN3d3eT8S1btigpKcnsMWfPntVHH31UZnzk\nyJHq0KGDVfqEY2sQUEdRUwiVArA9wqQAAABA5bRr10533nlnhfusW7dOx44dq6GO4Gzcr78LAAAA\nAAAAqmLw4MG2buGKkpISubi42LoNEy+88IJ69Ohh6zZgBcOHD1dBQYGt27jC0b/+b7vtNo0ZM0bz\n5s0zGf/www/Vvn17NWnS5MpYcXGxZs6cqezsbJN9O3TooJEjR1reOJyWf9PfQ6VL/31cedlFV8Z3\nrU2XJN12p5+tWgNQS/y44RxhUgAAAKAKHn30UW3fvr3CfWbPnq2XX365hjqCM2GFUgAAAAAAAACw\nU9HR0erbt6/JWHZ2tl566SXl5eVdGZs7d65++uknk/2aNGmi5557Tm5upqtPAtcqDZWyUimAmvbj\nhnP6ZdsFkzHCpAAAAEDFOnfurDvuuKPCfdasWaOTJ0/WUEdwJqxQCgAAAAAAgBrl5uZW5jHepQoL\nC5Wdna3s7Gzl5uaqpKSkRnry8vKSt7e3vL295eXlJVdX3ocN66jo678806ZN07lz57R3794rY4cO\nHdLMmTM1ffp0rV27VsuWLTM5xsfHRy+//LIaN25sSN9wfqxUCqCmESYFAAAAqu/hhx/W448/Xu72\nkpISffrpp5o+fXoNdgVnQKAUAAAAAAAANapevXpq1KjRlc9//fVXJSUladOmTUpJSamRHpo1a6bg\n4GD16NFDwcHB8vHxqZHzAtd+/VfWv/71L40bN07Hjx+/MrZ161a99957Wrt2rcm+7u7uevPNN9W1\na1eL+0XtUlGo1NXNRbd0a2DD7gA4E8KkAAAAgGXuuusutWvXTvv37y93n4SEBE2aNIk3HKNKXEpq\napkHAAAAAACAWiIzM9PWLVyRlZUlLy+vKq+IaE0eHh768ccfr4RIT58+bfVzenp66o477lDPnj3V\no0cPtWnTxurnrI2ysrJqbFXZyrDHr39vb2+76gcw58LpgjKhUkkKGtiYUCkAixEmBQAAAIyxZcsW\nPfnkkxXuc//99+uZZ56poY7gDAiUAgAAAAAAwOry8vK0ZcsWbdq0SVu2bKmR0G2bNm3Uo0cP9ejR\nQ926dZOHh4fVzwkAzoJQKQBr2PvNef38zXmTMcKkAAAAQPWNGTOmwlVK3d3dtXr1avn7+9dgV3Bk\nBEoBAAAAAABgFRkZGUpKSlJSUpK2b9+uy5cvW/V8vr6+uvPOO9WzZ0/16tWLRzkBgIUIlQIw0i9b\nL+jHjedMxgiTAgAAAJbZuHHjdVcgffDBB/XXv/61hjqCoyNQCgAAAAAAAMOkpaVp3bp1SkpK0k8/\n/WT1x5+3adNGd999t3r37q3OnTvLzc3NqucDgNqGUCkAIxAmBQAAAKyjpKREUVFROnbsWLn71K1b\nVwkJCapfv34NdgZHRaAUAAAAAAAAFjl27JjWrFmj9evXKyUlxarnqlOnjrp166a7775bffv2VWBg\noFXPBwAgVArAMoRJAQAAAOtatWqVXnzxxQr3mThxoh599FHDzx0UFKQdO3YYXhe2Q6AUAAAAAAAA\nVZaSkqJ169Zp/fr1Onz4sFXPFRAQoF69eql3794KDg6Wl5eXVc8HACjrwukCxbyXqvycYpNxQqUA\nKkKYFAAAALC+4uJiDRs2TGlpaeXuU69ePSUkJMjHx8eQcwYFBV35M4FS50KgFAAAAAAAAJWyf/9+\nrV+/XuvXr6/wEUpGaN++/ZVH2f/pT3+y6rkAAJVzLu2ylr1/nFApgEohTAoAAADUnJiYGL3++usV\n7jNlyhSNHTvWovNcHSS9GqFS50GgFAAAAAAAAOXat2+f1q9frw0bNuj48eNWO4+7u7u6d++uvn37\nKjQ0VP7+/lY7FwCg+uu+XIgAACAASURBVAiVAqgMwqQAAABAzSooKNDAgQOVkZFR7j5+fn5avXq1\n6tSpU+X65QVJSxEodR4ESgEAAAAAAGDi559/vrISaUWPSbKUj4+PevXqpb59+6pPnz7y9va22rkA\nAMYhVAqgIsnbM7RrbbrJWB0PF42Y0pIwKQAAAGBF8+fP17/+9a8K95k2bZpGjhxZqXrlhUhLSkrk\n4uJiMta1a1fNnj27co3CrhEoBQAAAAAAgJKTk7VmzRqtXbtWp06dstp5AgIC1LdvX4WEhKh79+5y\nd3e32rkAANZDqBSAOeWFSYdPbqGmrbxs1BUAAABQO+Tl5WngwIHKzMwsd5+AgAAlJCRUeF22KkHS\nUgRKnQdX7AEAAAAAAGqpEydOaPXq1UpMTNSRI0esdp7WrVsrJCREISEh6tixo9XOAwCoOY0CPTTi\niZZlQqU7Vp+VJEKlQC1EmBQAAACwLS8vL40aNarCYGd6eroSEhI0fPjwMtuuFyQtL0wK58IKpQAA\nAAAAALXI+fPnlZiYqDVr1mjfvn1WO0+nTp0UEhKifv36qUWLFlY7DwDAtlipFIBEmBQAAACwF5cu\nXVJERIRycnLK3ScwMFDx8fFydXWVVH6QtCpYodR5sEIpAAAAAACAk8vKytK6deuUmJionTt3yhrv\nL3ZxcVHXrl0VGhqqfv36qWHDhoafAwBgf1ipFABhUgAAAMB+1K9fX1FRUfriiy/K3SctLU1r167V\nCy+8UIOdwVGwQikAAAAAAIATys/P16ZNm7RmzRpt3bpVhYWFhp/D1dVV3bp1uxIi9fPzM/wcAADH\nwEqlQO1EmBQAAACwP+fOndOAAQOqdEzpY+2rixVKnQcrlAIAAAAAADiJwsJCfffdd0pMTNSmTZuU\nm5tr+Dnc3NzUvXt3hYaG6p577lGDBoSEAAAVr1Tq5u6imzrXt2F3AKyBMCkAAABgnxo1aqTo6GjF\nxMRcd9/SIKklYVI4FwKlAAAAAAAADm7Pnj1KTEzUmjVrlJmZaZVz9OjRQ2FhYQoJCVH9+oSCAABl\nlYZKl753XJfz/giVfr/ijCQRKgWcyMGdFwmTAgAAAHbswQcfVGxsrIqKisxuJ0iK8hAoBQAAAAAA\ncECpqalauXKlVq9erRMnThhev06dOgoODlZoaKhCQkLk6+tr+DkAAM6nUaCHIh9vodgPThAqBZzU\nwZ0XtWP1WZMxwqQAAACAfWnevHmZMOnVj7UnSIryECgFAAAAAABwEBkZGVq9erVWrVqlX3/91fD6\n7u7uCg4OVr9+/XTPPfeobt26hp8DAOD8Grf0JFQKOCnCpAAAAID9CwoKMvmc1UhRFQRKAQAAAAAA\n7Fhubq42btyoVatWafv27SouLr7+QVXg5uam7t27KywsTKGhoaxECgAwBKFSwPkQJgUAAADsW00F\nSa9e6RTOh0ApAAAAAACAnSkpKdH27du1cuVKbdiwQXl5eYbWd3V1VdeuXdW/f3/169dP9esT6gEA\nGI9QKeA8CJMCAAAA9unaEGkpQp+oLgKlAAAAAAAAdiI1NVXx8fFatWqVzpw5Y2htFxcXdenSRf37\n91dYWJj8/PwMrQ8AgDmESgHHR5gUAAAAsD/XC5LWdJi0Xr16NXo+WA+BUgAAAAAAABu6dOmSEhMT\ntXLlSu3bt8/w+rfffrvCwsI0YMAANWzY0PD6AABcD6FSwHERJgUAAADsi70FSUvdeuutNjkvjEeg\nFAAAAAAAwAY2b96s+Ph4JSUlGV67Q4cO6tevn8LCwtSsWTPD6wMAUFWESgHHc+jHS2XCpC6uRWrW\nNU1NW91so64AAACA2qm8IGkpHm8PoxAoBQAAAAAAqCFHjx5VbGysVq9erXPnzhlau0WLFho4cKAG\nDx6sG264wdDaAAAYgVAp4DgO/XjpyvdmqToeLlr/61s6tGm3vljSWuPHj1d4eLhcXV1t1CUAAADg\n/K4XJAWM5lJSUlJi6yYAAAAAAACcVVZWllatWqUVK1bo119/NbR2gwYNFBYWpoEDB6pz586G1gYA\nwFrOHs8vEyqVpLuGNCFUCtiB8sKkvrf+qnc+mmEy3rJlSz300EMaPHiw3N1ZxwYAAAAwirkgaelj\n7W3NXB8TJ07Uo48+aqOOYCQCpQAAAAAAAAYrLi7Wtm3blJCQoE2bNqmgoMCw2p6enurTp48GDhyo\nnj17cuMeAOCQCJUC9slcmNS9jouGTmqm8ZOjlJ6ebva4Zs2aady4cRo+fDjzUwAAAMBC14ZJ7SVI\nWopAqXMjUAoAAAAAAGCQ48ePKy4uTgkJCeXebK+uO+64Q4MHD1b//v1Vt25dQ2sDAGALZ4/na9m/\nj6vgsultCkKlgG2UFyYdNqmFtv+8Ri+99NJ1azRu3Fhjx45VZGSkPD09rdUqAAAA4PTMhUol2UWw\nlECpcyNQCgAAAAAAYIG8vDytW7dO8fHx2r17t6G1W7ZsqYiICEVERKhZs2aG1gYAwB6cPpqnuA9P\nECoFbKyiMGnT1h4aOnSoTp06Vel6jRo10l/+8hdFR0fLy8vL6HYBAAAAp2fukff2gkCpcyNQCgAA\nAAAAUA179+5VfHy81q5dq+zsbMPq+vr6qn///ho8eLA6d+5sWF0AAOwVoVLAtioKkwbe5KU1a9bo\nb3/7W7Vq+/n56YEHHtB9990nHx8fI9oFAAAAag17DZUSKHVu7rZuAAAAAAAAwFFcvHhRCQkJWr58\nuX777TfD6rq5ualHjx6KiIhQ3759VadOHcNqAwBg75q28tLwyS3KhEpLA26ESgHrObI3s8IwqSQd\nPny42vUzMjL0wQcfaN68eRozZoxGjRolX19fi3oGAAAAaouuXbtq165d5W43F+wELMUKpQAAAAAA\nABUoKSnR999/r7i4OCUlJamwsNCw2jfffLOGDBmiQYMGqWHDhobVBQDAEZW3UmmP4U3VumM9G3UF\nOK8jezP1bfxp6apvuWvDpKVSU1M1e/ZsrVmzRsXFxdU+p4+Pj+677z6NGTNGDRo0qHYdAAAAoLaY\nNWuWPvnkE7PbbBUoZYVS50agFAAAAAAAwIz09HTFxcUpPj5eaWlphtWtV6+eBgwYoKFDh6p9+/aG\n1QUAwBmYDZW6SD2GESoFjFSVMOnVTpw4oU8//VSrVq2y6I1WXl5eio6O1tixY+Xv71/tOgAAAEBt\nkJSUpBkzZigrK8vsdntYqZRAqfMgUAoAAAAAAPBfRUVF2rx5s+Li4rRt2zaLVl+6mqurq4KDgzVk\nyBCFhITwSHsAACpAqBSwruqGSa92+vRpffbZZ1q+fLkKCgqq3Yunp6ciIyM1btw4BQQEVLsOAAAA\n4OySk5M1Y8YMHTx40NatsEKpkyNQCgAAAAAAar20tDQtXbpUCQkJSk9PN6xuq1atNGTIEEVERHCD\nHACAKiBUCliHEWHSq6Wnp2vevHmKjY1Vfn5+tfuqU6eOhg0bpoceekhNmzatdh0AAADAmWVmZurt\nt99WQkKC2e2lMUBrr1ZKoNS5ESgFAAAAAAC1UkFBgdavX6+4uDjt2LHDsLre3t4KCwvT0KFD1aVL\nF8PqAgBQ2xAqBYxldJj0ahcuXNB//vMfxcTEKC8vr9p13N3dNXjwYI0fP14tWrSwqCcAAADAWS1c\nuFAzZ8602fnNBUo//vhjBQUF2agjGIlAKQAAAAAAqFVSU1MVExOjhIQEXbx40bC6nTp10rBhw9S/\nf3/VrVvXsLoAANRmhEoBY1gzTHq1ixcvav78+Vq8eLGys7OrXcfV1VXh4eGaOHGibrjhBsP6AwAA\nAJxFcnKyHn30UWVlZZndbi70aRQCpc6NQCkAAAAAAHB6BQUFWrdunWJjY7Vr1y7D6vr5+Wnw4MGK\njIxU69atDasLAAD+QKgUsEzq/ixtWXrK6mHSq2VlZWnBggVatGiRMjMzq13HxcVF/fr108SJE3XT\nTTcZ2CEAAADg+DIzMzV16lRDr3lXBoFS50agFAAAAAAAOK3U1FQtWbJEK1euNGw1UhcXF/Xo0UPD\nhg1T37595e7ubkhdAABQvtNH8xT7wQkVFhAqBaoidX+Wti49pZIaDJNeLTs7W1999ZUWLlyojIwM\ni2qFhIRo0qRJatu2rUHdAQAAAM7hrbfe0qJFi8xus8ZKpQRKnRuBUgAAAAAA4FRKVyNdtmyZdu/e\nbVjdZs2aadiwYRo2bJiaNGliWF0AAFA5aYfyFP8xoVKgsmwdJr1aXl6elixZoi+++ELnz5+3qNbd\nd9+tRx55RO3btzeoOwAAAMDxrVixQm+//baysrKsfi4Cpc6NQCkAAAAAAHAK1liN1N3dXX379tXw\n4cMVHBxs+Du5AQBA1RAqBSrHnsKkV8vPz1dsbKz+85//6OzZsxbVuuuuuzRp0iR16tTJoO4AAAAA\nx5acnKwZM2bo4MGDVj0PgVLnRqAUAAAAAAA4rMLCQq1fv15Lly7Vrl27DKvbqlUrDR8+XEOGDJGf\nn59hdQEAgOUIlQIVs9cw6bViYmL06aefWhws7dKli8aPH6+ePXsa1BkAAADguDIzMzVjxgxt2rTJ\n7PbSqKAliycQKHVuBEoBAAAAAIDDSUtLU0xMjOLj45WRkWFITU9PT4WGhioyMlJ33HGHITUBAIB1\nECoFzHOUMGmpwsJCrVy5UnPnztXx48ctqtWhQwdNmDBBffr0Mag7AAAAwHEtXLhQM2fONLvNXCC0\nKgiUOjcCpQAAAAAAwCEUFRXpm2++0dKlS/Xdd98ZVrdt27YaPny4IiIi5Ovra1hdAABgXYRKAVMn\nDmRr85I0kzCpm7uLhj9mn2HSqxUXFysxMVGfffaZjhw5YlGttm3basKECQoNDZWrq6tBHQIAAACO\nZ8eOHZo2bZqysrLMbq9usJRAqXMjUAoAAAAAAOxaenq6YmJiFBcXp/T0dENqenl5qV+/fhoxYoRu\nv/12Q2oCAICaR6gU+N2JA9naHJOmkuI/xtzcXTTkkeZqeYu37RqrouLiYq1fv16ffvqpUlJSLKp1\n4403avz48QoPD5e7u7tBHQIAAACO5eTJk5o6daoOHjxoWE0Cpc6NQCkAAAAAALA7JSUl2rp1q5Yu\nXaqtW7equLj4+gdVwi233KLIyEgNHjxYPj4+htQEAAC2RagUtZ2zhEmvtXHjRn366afav3+/RXWa\nNWumcePGaejQofLw8DCoOwAAAMCxzJgxQwkJCWa3lcYHK7taKYFS50agFAAAAAAA2I2MjAwtW7ZM\nsbGxSktLM6Sml5eXBgwYoMjISHXs2NGQmgAAwL6UFyq9O6qZbmjna7vGACtz1jDp1bZs2aI5c+Zo\n7969FtUJCAjQmDFjFB0dLS8vL4O6AwAAABzHihUr9PbbbysrK8vw2gRKnQeBUgAAAAAAYHPbt2/X\nsmXLlJSUpMLCQkNq3nbbbYqMjNSgQYNUt25dQ2oCAAD7ZS5U6uIi9SJUCidVG8KkV/vuu+80Z84c\n7dmzx6I6DRo00KhRozRy5Ej5+vKzAQAAALVLcnKypk6dqlOnThlal0Cp8yBQCgAAAAAAbCIzM1Px\n8fFaunSpUlNTDanp5eWlsLAwRUVFsRopAAC1UNqhPMV9dEJFhYRK4dxqW5j0ajt27NC8efP03Xff\nWVTH29tb9957r/7yl7/I39/foO4AAAAA+5eZmakZM2Zo06ZN5e5j7rH2FVm+fLmaN29uRHuwMQKl\nAAAAAACgRu3Zs0dLly7VunXrVFBQYEjNNm3aKCoqSkOGDJGPj48hNQEAgGM6fjBXK2afJFQKp1Wb\nw6RX++WXXzRnzhx98803FtXx8PDQ8OHDNXbsWDVt2tSg7gAAAAD7N2vWLH3yySdmt1U1ULpjxw6j\n2oKNESgFAAAAAABWl52drYSEBC1btky//fabITXd3d0VGhqqESNGqFu3bobUBAAAzoFQKZxV2m85\n2vTVyVofJr3aoUOHNGfOHH399dey5Lanm5ubBg4cqAkTJuiGG24wsEMAAADAfiUlJWnGjBnKysoy\nu72ywVICpc6DQCkAAAAAALCalJQULV68WKtWrVJeXp4hNVu0aKHIyEhFRkaqQYMGhtQEAADOh1Ap\nnE3abzn6ZvFJFRf9MVbbw6RXS01N1dy5c7Vq1SoVFhZWu46Li4tCQ0P18MMPq23btgZ2CAAAANin\nkydPaurUqTp48GC1axAodR4ESgEAAAAAgKEKCgq0bt06LVmyRD/99JMhNd3c3NS7d29FRUUpODi4\nSo/aAQAAtRehUjgLwqSVd/r0ac2bN0/x8fG6fPmyRbV69Oihhx56SF27djWoOwAAAMA+ZWZm6u23\n31ZCQoLZ7aURw/KuzRModR4ESgEAAAAAgCFOnTqlmJgYxcXFKSMjw5CajRo1UmRkpKKiotS4cWND\nagIAgNrl+MFcxX14osx4rxHNdGN7QqWwf4RJq+fcuXOaP3++YmJilJuba1GtTp06afz48erdu7dB\n3QEAAAD2acWKFfrHP/5R5eMIlDoPAqUAAAAAAKDaSkpKtG3bNi1ZskRbt26VUZcZunTponvvvVeh\noaFyd3c3pCYAAKi9WKkUjur0kVwlfXmCMKkFMjMztXDhQi1atEiZmZkW1br55ps1btw49e/fX25u\nbgZ1CAAAANiX5ORkTZ06VadOnar0MT/88ANPFnMSBEoBAAAAAECVXbx4UfHx8Vq6dKlOnCi74ld1\neHt7a9CgQbr//vt10003GVITAACgFKFSOJrfw6QnVVxkeitv2GMtdMOthEmrKjc3V0uWLNH8+fN1\n/vx5i2o1b95cDz74oIYMGSJPT0+DOgQAAADsR2ZmpqZOnapdu3ZVav+33npLISEhVu4KNYFAKQAA\nAAAAqLSff/5ZMTExWrt2rQoKCgyp2bp1a0VHR2vIkCHy8fExpCYAAIA5hErhKMyFSVmZ1Bj5+fla\nvny5/vOf/1RpxSVzGjZsqNGjRys6Olq+vvwMAQAAgH259s1p1fHOO+9o8eLF193vtttu07x58yw+\nH/7g6mabFV8dNlCadjhPaYdzdfFsgTIvFCozo1BZGQUqyHfIvw7gEOp4usjXr47q+burnp+7GjSu\no8A23gps42Xr1gAAgIWYXwM1z5Hm13l5eUpMTNSSJUuUnJxsSE03Nzf17dtX9957r7p3725ITQAA\ngMogVAp7R5i0ZhQWFioxMVFz587V0aNHLarl4+Oj6OhojRkzRv7+/gZ1CAAAAFjm/adSbN0CLPDE\nO21tcl6HCpTuScrQkV+ylXYkT0UFDtM24PTc67ioWWsvtenoo859/GzdDgAAqCTm14B9sqf59bFj\nxxQTE6O4uDjl5OQYUrNhw4YaMWKEoqKi1LhxY0NqAgAAVNXxA7la8YlpqFSS7o4mVArbOn04V0mL\nCJPWpOLiYm3YsEGfffaZDhw4YFGtOnXqaPDgwRo3bpxatmxpUIcAAABA9RAodWwESiuQ8mOWti1P\n16XzhbZuBcB11G/krruHNdZNnXhMJQAA9or5NeA4bDG/Lioq0qZNm7RkyRL98MMPhtUNCgpSdHS0\nQkJC5O7ublhdAACA6jp+MFfLZ51QcdEfY6xUClsytzKpq5s09NEWhElryNatWzV37lzt2bPHojou\nLi7685//rPHjx6tdu3YGdQcAAABUDYFSx0ag1Iz0k5e1KeaM0g7n2boVAFXU/GZvhUQ3VsNmHrZu\nBQAA/Bfza8Bx1cT8Oj09XbGxsVq2bJnOnj1rSE1fX19FREQoOjparVu3NqQmAACAkY7+mqOVn54k\nVAqbKy9MOnhCc7X6U10bdlY7/fzzz/r000+1ZcsWi2sFBQVp3LhxCg4ONqAzAAAAoPLKBEpdbNMH\nKumaFCeB0mv88v0lbVh0ptztDRp7qMWtPmrWpq68fNzk4eUqT283ubrzlQ9YS3FhifJzi3Q5r1h5\nWUU6dSRHJw5k6+LZy+Ue0290U7XrXq8GuwQAAOYwvwbsj73Mr3fs2KGYmBht3LhRRUVF1z+gEtq1\na6d7771XAwYMkJeXlyE1AQAArIVQKWyNMKn9SklJ0bx587R27VoVFxdbVOvWW2/Vgw8+qLCwMLm5\nuRnUIQAAAFC+awOlo16wTUARlfPly6avF4HSq+xcd0HfrjxndtstQQ30px7+8mnA4/EAe5F9sVD7\ntpzXb7svmd1+97AAdQnxq+GuAABAKebXgGOpifl1dna2VqxYoZiYGB05csSiWqU8PT3Vv39/RUdH\nq0OHDobUBAAAqCnlhUp73xuoFrf62K4xOD3CpI7hxIkT+vzzz7V8+XIVFBRYVCswMFAPPPCAhg8f\nzhvwAAAAYFUESh0LgdJyfLvynHauu1BmvGkbbwUNaKL6AXVs0BWAyrh49rJ2rjmr00dyy2zr3r+h\n7hrY0AZdAQBQu32bcE471zO/BhyRNebXKSkp+uqrr7R69Wrl5eUZ0aZatWqlqKgoDRkyRPXq8XQC\nAADguMyGSl2l3tGESmEdhEkdz7lz57RgwQLFxMQoJyfHoloNGjTQfffdp1GjRql+/foGdQgAAAD8\ngUCpYyFQasaBnZlaO/+0yZiLq9Q1LEC3dmd1Q8BRJG/P0O6v03XtT5ewB5rqtiBuMAMAUFP2fXtJ\nGxebPuae+TXgeCydXxcUFGjdunVasmSJfvrpJ0N6cnNzU9++fXXvvfeqe/fuhtQEAACwB4RKUVMI\nkzq2rKwsLVmyRF9++aXOnz9vUS1PT08NHTpUDz74oAIDAw3qEAAAACBQ6mgIlF7j1JE8Lfv3cRUX\n/zFWx8tVfe9vrsY38LgHwNGcOpyrrUvTdDnvj29qV1cp8omWCmzD9zQAANZ29ni+vpqZKl0122d+\nDTiu6syv09LStHTpUsXFxSkjI8OQPpo0aaLIyEhFRkYqICDAkJoAAAD2hlAprM1cmNTFVYp4mDCp\no7l8+bKWL1+u+fPn6/jx4xbVcnV1Vb9+/TR+/Hi1bcuNfgAAAFiOQKljIVB6lUvnCvTVzFTl5/xx\nY6yOl6vCJ9wgX38ewQk4qszzBVrzWaoKrrrp7eXjqvuevlH1G7rbsDMAAJxbblaRFr2VquyLhVfG\nmF8Djq8y8+uSkhJt3bpVMTEx2rp1q4z6lT84OFjR0dHq3bu33NzcDKkJAABgzwiVwlrKC5MOeihQ\nbTryteWoiouLtX79es2bN0/JyckW1wsKCtKYMWN09913G9AdAFju2kASYM9sFcAC7BGBUsdiL4FS\nV5uc9RpfLzhtEiZ1dZVCRjbnZjfg4Oo1rKOQkc3l4vLHWF52cZlH7wIAAGNtjk03CZMyvwacw/Xm\n1wkJCRo6dKiefPJJbdmyxeIwab169TRy5EjFxcXp/fffV0hICGFSAABQa7T6U10NntBcrldNf0qK\npc0xaTpxINt2jcGhESZ1Xq6urgoLC9OCBQv0/vvvKygoyKJ6O3bs0JNPPql7771XcXFxKigoMKhT\nAAAAAKiYzQOlqck5SjucZzIWPLSpAlryGE7AGQS09FL3wU1MxlKTc3Tyt1wbdQQAgHM7l3ZZB3Zl\nmowxvwacR3nz6/uHTtKMGTOUlpZm8Tk6duyoGTNmaOPGjZo2bZpatmxpcU0AAABHRKgURiJMWnsE\nBwfr448/1vz58xUaGiqXq98VWEWHDx/Wyy+/rMGDB2vOnDm6dOmSgZ0CAAAAQFk2D5RuiU83+bx5\n27pq1bGejboBYA03d6mvwJvqmoxtWZ5ezt4AAMASzK8B52duft2uyXCLanp5eSkyMlKLFi3SvHnz\nFBERYVE9AAAAZ1EaKnW56m4KoVJUFWHS2qldu3b65z//qdjYWI0YMUIeHh7VrnX+/Hl9/PHHGjhw\noF577TUdP37cwE4BAAAA4A/utjx5yp4snUu7/MeAi9S1f2PbNQTAau4IC1DarGNXPj9zLF+Hfs7W\nTZ24WAYAgFGOH8xVanLOHwPMrwGnde38unG9trqxUXcdO/dDlercdNNNioqKUkREhHx8mJsDAACY\n0+pPdTXooUCtmpumkuLfx0pDpb2jA9XiVuZRKB9hUrRs2VLPP/+8Jk+erIULF2rJkiXKzMy8/oFm\n5Ofna+nSpVq2bJl69+6tMWPGqGvXrgZ3DADXN/L5trZuAbhi0asptm4BAJyKTVco3fvtRZPP23Sq\np3oN69ioGwDW1KCxh1p1MF0dbe+2i+XsDQAAquOnLRkmnzO/BpyXufn1rc1CK3Wsu7u7+vfvr9mz\nZ2vx4sW6//77CZMCAABcR5uOPhr0UCArlaJKzIZJXQiT1lZ+fn6aPHmyVq9eralTp6pZs2bVrlVS\nUqJvvvlGjzzyiMaMGaPExEQVFhYa2C0AVMzFlQ8+7OcDAGAsm/1oLSos0cnf8kzGbu3uZ6NuANSE\nW7s3MPn8+MFcFRWWlLM3AACoipJi6divOSZjzK8B53bt/DrQr6Nc5FLu/k2aNNFjjz2mVatW6dVX\nX2UVGwAAgCoiVIqqKC9MOmBsM8KktZyXl5dGjRql+Ph4vfTSS7rlllssqrd//3698MILGjJkiObN\nm6esrCyDOgUAAABQG9ksUHrit1yTX6I9vV3VMNDTVu0AqAEBLbzk4f3Hj53iohKdPJRXwREAAKCy\n0o7kqbDgj/l1HU/m14Czu3Z+7ebqriYN2pns4+Liol69eumdd95RQkKCJkyYoIYNG9Z0qwAAAE6D\nUCkqo6IwadvOvjbsDPbEzc1NAwcO1Jdffqn3339fwcHBFtU7e/as3n//fYWHh+uNN97Q8ePHDeoU\nAAAAQG1is0Dpsf2mqye1bMcv0IDTc5Fa3mr6vX5sPxdZAQAwwtFfTf9Pbd2xXjl7AnAaZubXLRp2\nkPT7oxTHjRun5cuX691331Xv3r3l6srznwAAAIxAqBQVIUyK6ggODtb777+vxYsXa/DgwXJ3d692\nrby8PC1evFiRkZGaNm2a9uzZY2CnAAAAAJydze4mnUu7bPJ5w+ZeNuoEQE1q2Nx0pbRzJy+XsycA\nAKiK9BP5Jp8396Pl0QAAIABJREFUvtHbRp0AqEnXzq+739FHL7/8statW6cnnnhCgYGBNuoMAADA\nuREqhTmESWGpm266Sf/4xz+UkJCgsWPHyte3+l83JSUlSkpK0sMPP6yxY8fq66+/VlFRkYHdAgAA\nAHBGNguU5maZ/sLiU7/677QD4Djq1jP9Xs/N5uIFAABGuHZ+7V2P+TVQG1w7v27WuLXCw8Nt1A0A\nAEDtQqgUVyNMCiMFBARoypQpWrVqlZ5++mk1a9bMonr79u3Tc889p2HDhmnBggXKycm5/kEAAAAA\naiW7CZTWJVAK1Ap1G9Qx+TyPQCkAAIbIybwmUOrrZqNOANSka+fXWRcKbdQJAABA7VRRqDTtNwJb\ntQVhUlhL3bp1NXr0aMXHx+u1115Tx44dLap36tQpvfPOOwoPD9cbb7yhY8eOGdQpAAAAAGdhu0Bp\npulNLl//OuXsCcCZXBseZ4VSAACMkXPJdH7t48f8GqgNfBqYzq8zMwiUAgAA1LTyQqXfLD5JqLQW\nMBcmFWFSGMzNzU1hYWGaN2+ePvvsM4WGhsrVtfq3eXNycrR48WKNGDFCjz/+uDZt2qTi4mIDOwYA\nAADgqGwWKL32dxI3dxfbNAKgRnl6m/7YKbxcUs6eAACgKq6dX1twTwGAA/HwMv1mv5zLDUAAAABb\nMBcqLS4iVOrsyguThj3QlDAprOb222/XP//5T8XHx2v06NHy8fGxqN7333+vqVOnatiwYfr888+V\nmZlpUKcAAAAAHBG3mQEAAAAAAAAAACx0JVR61foZhEqdV0Vh0tu61bNdY6g1AgMD9fTTT2vlypV6\n6qmnFBgYaFG9tLQ0vffeewoPD9dLL72klJQUgzoFAAAA4EgIlAIAAAAAAAAAABigTUcfDRjbjFCp\nkyNMCnvi6+urBx54QPHx8XrzzTfVrVs3i+rl5+crPj5eI0eO1IQJE7R27VoVFhYa1C0AAAAAe0eg\nFAAAAAAAAAAAwCBtO/sSKnVihElhr1xdXfXnP/9Zs2bN0uLFizV8+HB5enpaVPPHH3/U888/r4iI\nCM2ePVvnz583qFsAAAAA9opAKQAAAAAAAAAAgIEIlTonwqRwFDfddJNeeOEFJSYmasqUKWrWrJlF\n9dLT0zV79mwNGjRIzz77rHbs2GFQpwAAAADsDYFSAAAAAAAAAAAAgxEqdS5mw6QiTAr7Vq9ePY0d\nO1YJCQl644031K1bN4vqFRYWat26dZo0aZKioqI0f/58ZWZmGtQtAAAAAHtAoBQAAAAAAAAAAMAK\nCJU6h/LCpPeMbEKYFA7jnnvu0axZsxQTE6OoqCh5eXlZVO/o0aP617/+pfDwcM2YMUN79+41qFMA\nAAAAtkSgFAAAAAAAAAAAwEoIlTq2isKk7e+qb6OugOpr3bq1nnvuOSUmJurpp59Wy5YtLaqXn5+v\nhIQEjRs3TqNHj9ayZcuUm5trULcAAAAAahqBUgAAAAAAAAAAACsiVOqYCJPCmfn6+mr06NGKjY3V\nu+++q169ellc88CBA3r11Vc1YMAAvf7660pJSTGgUwAAAAA1iUApAAAAAAAAAACAlREqdSzpqXmE\nSVEruLi4qFevXnr33XcVFxen0aNHy9fX16KaOTk5iomJ0ciRIzVu3DjFx8crLy/PoI4BAAAAWJO7\nrRsAANiHM2fO2LoFAA6qSZMmtm4BAAAAAACH0LazrzS2mdb855RK/ptTLA2V9rmvuQJvrmvbBiHp\n9zDphgUnCJOi1mnZsqWefvppTZ48WStXrtTixYv122+/WVRz79692rt3r95++20NGDBAkZGRat++\nvUEdAwAAADAagVIAgCSppKTk+jsBAAAAAAAAsAihUvtWGiYtKiRMitrLy8tLUVFRioqK0u7duxUT\nE6P169ersLCw2jVzcnIUGxur2NhY3XLLLYqMjNSgQYMsXg0VAAAAgLF45D0AAAAAAAAAAEANatvZ\nVwPGNpNc/hgrDZWm/ZZju8ZqOcKkQFl33HGHXnnlFSUmJuqJJ55Q8+bNLa558OBBvfHGGxowYIBe\nfPFF7d6924BOAQAAABiBQCkAAAAAAAAAAEANa9vZV2EPNCVUaifKC5P2jW5MmBSQ5Ofnp3Hjxik+\nPl7vvfee+vTpI1dXy2415+fna9WqVZo4caKioqL0xRdfKCMjw6COAQAAAFQHgVIAAAAAAAAAAAAb\nuK1bvXJDpaeP5NqusVqmojBpp14NbNQVYJ9cXFzUs2dPzZw5U8uXL9fDDz+sgIAAi+sePXpU7777\nrsLDwzVt2jRt2rRJhYWFBnQMAAAAoCoIlAIAAAAAAAAAANhIeaHSpC8JldYEwqRA9TVr1kyTJk1S\nQkKC/vnPf6p79+4W1ywsLFRSUpKmTp2q8PBwzZw5UykpKQZ0CwAAAKAyCJQCAAAAAAAAAADYkPlQ\naQmhUisjTAoYw93dXaGhofroo4+0bNkyPfDAA6pfv77FdTMyMrRw4UKNHDlSDzzwgBYtWqSLFy8a\n0DEAAACA8hAoBQAAAAAAAAAAsDFCpTWLMClgHTfeeKOeeuopJSYm6uWXX1ZQUJAhdZOTk/XWW29p\nwIABmjZtmjZt2qTCwkJDagMAAAD4g7utGwAAAAAAAAAAAMDvoVJJ+nrBaem/OcfSUGnIqOZq2trb\nht05D8KkgPV5eHgoPDxc4eHhOn78uOLi4pSQkKD09HSL6hYWFiopKUlJSUny9/fXwIEDNXToULVt\n29agzgEAAIDajUApAAAAAAAAAACAnSBUal3lhUnvHh5AmBSwkpYtW+qJJ57QY489pq1btyo2NlZb\nt25VcXGx2f0XLFhQpfpFRUVKSUmRp6enPDw85OrKQzqdSePGjW3dAgAAQK1CoPS/nn/+Ce3c+Z3J\nmL9/Qy1atNZGHQEA7Nn06dO1a9cukzE/P78qX+gCrOnixYuaOnWq0tLSTMbvueceffPNNyaPhHJ3\nd9c//vEPdenSpabbhJNifg0AAAAA1Ueo1DoqCpN26etno66A2sPNzU19+vRRnz59lJ6erhUrVigu\nLk4nTpww2c/Pz7Lvx/KCqgAAAACuj7dnAQAAOKHLly/rlVdeKRMm7dmzp55++mk98cQTJuOFhYV6\n9dVXdezYsZpsEwAAAAAAlOO2bvUU9kBTyeWPsdJQ6ekjubZrzEERJgXsS0BAgB566CHFxcXp448/\n1oABA1SnTh1btwUAAADUeqxQCgAA4ITeffdd7du3z2Ts5ptv1tSpU+Xi4qKwsDAdO3ZMy5Ytu7I9\nOztbf//73/XOO+9YvAqAIwsKCiozFhgYqEcffVQRERE26AgAAAAAUFtdWal0/ukrY6xUWnWESQH7\n5eLioqCgIAUFBSkrK0uJiYm2bgkAAACo1VihFAAAwMksWbJESUlJJmM+Pj564YUX5OXldWXsoYce\n0u23326y35kzZ/Tqq6+qqKioRnp1FGlpaZoxY4aGDBmihIQEW7cDAAAAAKhFbutWT/eMbGIyxkql\nlUeYFHAcvr6+io6OtnUbAAAAQK1GoNRgGzas1oABQVc+vvhilq1bQgV4vQDY2saNGzV48OArHwsW\nLLB1S3BwycnJmj9/fpnxyZMnq0kT05tPrq6ueuqpp+Tj42Myvm/fPi1atMiqfTqq0mBpREQEwdIa\nwnzNsfB6AQAAANbR/q76hEqrgTApAAAAAABVwyPv/ysqaoxCQgaYjHl4eFa5TnLyvuvvBLvB6wWg\nuiIjI9W3b1+TMQ8PjyrXOXDggFEtAcrNzdWbb76pwsJCk/G7775bISEhZo9p0qSJJk2apLfffttk\nfNGiRbrjjjvUvn17q/XryE6dOqUZM2Zo1qxZevTRRxUREWHrluwO8+vaidcLAAAAsJ72d9WXJG1Y\ndObKWGmoNGRUczVt7W2r1uwSYVIAAAAAAKqOQOl/desWbEidAwd+MaQOagavF4Dq6tq1qyF1Dh48\naEgdQJI++eQTpaWlmYz5+/vr8ccfr/C4e+65R9999522bt16Zay4uFhvvvmmPvroI3l5eVmlX3tX\nUvL7DScXF5dy9yldsfTjjz/WpEmTCJZehfl17cTrBQAAAFgXodLKKS9M2mNwI8KkAAAAAABUgEfe\nG6ioqEi//ZZs6zZQSbxeAGytqKhIhw4dsnUbcBLJyclas2ZNmfEHH3xQ9evXv+7xDz/8cJlVds+c\nOaPFixcb1qMjKg2TloZLy1O6YumQIUOUkJBQE63VCszXHAuvFwAAAFAz2t9VX/eMbGIyVhoqPX0k\n10Zd2Y+KwqTd+vnbqCsAAAAAABwDgVIDHTnym/Lz823dBiqJ1wuArR09epSfQzBESUmJZs2aVWa8\nTZs26tevX6VqNGnSRMOHDy8zHhsbq1OnTlnco6OrbLC0dMVSgqXGYL7mWHi9AAAAgJpDqNQ8wqQA\nAAAAAFiGQKmBeLyjY+H1AmBrPO4eRlm/fr2Sk8uuCjhx4kS5ulZ+unfffffJz8/0sW+XL1/WnDlz\nLO7RWRAsrVnM1xwLrxcAAABQsyoKlaan5tmoK9shTAoAAGA9Gzeu0YABQWU+fvhhm61bAwAYzN3W\nDTiT5OR9tm4BVcDrBcDWDhw4YOsW4ASKioq0cOHCMuO33367OnfuXKVa3t7eio6OLhMg/fbbb5WS\nkqK2bdta1KszuTpYWvpnc0qDpStWrNDEiRMVFBRUUy06BeZrjoXXCwAAAKh57e+qL0nasOjMlbHi\nohJtWHBC9zzQQgE3eNmqtRpFmBQArO/QoUNKSUnRkSNHdOTIEZ0/f155eXnKyclRXl6e3Nzc5OXl\nJU9PT/n6+iowMFCBgYFq1aqVunTpokaNGtn6rwAAAIBKIFBqoIMHrbMiT0lJiX755Sft2vW9kpP3\n6uTJ47pw4Zzy8/Pk6uoqb++6CghoopYtW6l9+866667eat68pVV6ubavrVs3asOG1Tpw4BddvHhB\nLi4uatIkUH/72+tq06ZyoZOzZ0/r++83KyUlWUeOpOjcubPKyclWbm6O6tSpI1/f+qpXr75at26r\ndu066o477lSrVjdZ3L+1Xq/Lly9r167v9dNPO5WSsl9nzqQpI+PCldfLy8tbDRsGqFmzFrr11j+p\nc+fu6tixS5VWkKuOil6vOXNirHpuAOZZa4XSkpIS/frrr9q9e7cOHDigtLQ0XbhwQfn5+f/9f8Nb\njRo1UosWLdS+fXvdeeedCgwMtEov1/a1bds2JSUl6eDBg7p48eJ/fw410bPPPqvWrVtbvQdntHXr\nVp0+fbrM+LBhw6pVr3///lqwYIFyc00fjxcbG6tnnnmmWjWdWWWDpTt37tTOnTvVrVs3gqVVwPya\n+bXE/BoAAAC4HnOh0qLC2hMqLS9Memd4Q8KkgAPbtWuXpk+fbnbbjBkz1L17d6v38N5772nNmjVl\nxhs1aqSPPvpIPj4+5R777LPP6ueff7Zme9fVu3dvPfvssxbVOHHihNatW6fNmzcrLS2twn2Liop0\n+fJlSdLZs2d1+PBhk+033nij+vXrp/Dw8Ar/7ZyduWvDXDcGAAD2hEDpfz3//BPaufM7kzF//4Za\ntGit2f3z8/M1dGiv69adP/8TzZ//SZnx22/vqjffnF3hsYWFhVq9OlYxMV/o1KmTZvcpKipSQcFF\nXbp0UYcOHdQ336zTxx+/rY4du2jUqAkKCupx3R7N+X//7zHt2fODyVhERLSmTPn9l47s7Cz93/89\nU2YfSUpNPaJLlzKue47t27dq0aLPtG/fj+XuU1RUpLy8PKWnn9HhwynauDFRktS5c5Cio/+iO++8\n/msg1czrdf78OcXEfKHExDhlZ2eZ3ae4uFhZWZnKysrUsWOHtX37Fs2f/4kaNgzQsGH3a9iwkfL2\n9q7U3+lqlr5eAKpu+vTp2rVrl8mYn5+fFixYYHb//Px8jRgx4rp1Fy5caHa1yU6dOun111+v8NjC\nwkIlJiZq2bJlZgOGUun/GwW6dOmSDh8+rC1btmj27Nnq0KGD7r//fnXr1u26PZrz/PPP68cfTX+e\nDxo0SI8//rgkKTs7W6+88kqZfSQpNTVVly5dqtZ5IS1btqzMWGBgoO68885q1fPx8VFYWJiWL19u\nMr5582aNHTtWTZo0KefI2o1gaVnMr00xvzbF/BoAAAAwVm0NlZYXJu0W6q87BzS0UVcAjNC1a1f1\n799fa9eWvZb04Ycf6sMPP6zW7/yV9fPPP5sNk0rSlClTnD4QeenSJS1cuFCrVq1SUVGRITWPHTum\nzz77TIsWLdLo0aM1fPjwCq+l1ia16boxAACwf9ZdsgXVdvDgfk2ePFrvv//Pcm92V2Tv3j3629+m\n6JVXni335mtFPDw8y4zl5+dJ+j0o8dJL/2v25mllXLp0UX/72xRNn/4/Fd7srsiPP+7Q9On/o3ff\nfVX5+fnVqmGkr79O0MMPR2np0vnV+vc+fz5dc+d+oIkTo7Vr1/dVPt6arxcAx5CSkqIpU6boo48+\nKjdMWpF9+/bpxRdf1Guvvabs7OwqH+/h4VFmrPSdyCUlJXr11VfNhklhmX379pld6TYiIsKilfmG\nDh1aZqyoqEgrVqyods3aorIXQHfu3KlJkybp0Ucf1Y4dO6zcFSTm19fD/NoU82sAAAA4ovZ31dc9\nI03fCFoaKk1PzbNRV9ZTUZi0RwSPVQacwcMPP2z2MelnzpzR559/brXzXr58We+//77ZbaGhoTWy\nOqot/fjjj5o0aZJWrFhhWJj0ajk5OZozZ45mzJhR5klZtV3pdeNHHnmE68YAAMBmCJTaoW3bkjR1\n6gQdPXrI4lrffLNO//M/45Sefub6O1/Fy6vsu5Vzc3MkSYmJ8dq9e3u1+jlz5pSeemq8duz4tlrH\nX2vVqmX6+9+fUmFhoSH1qmP27H/prbdmVOtG97XOnj2tv/1tilavjqvScdZ6vQA4hm+//Vb/+7//\nq2PHjllca8uWLZo6darS09OrdJynZ9ngTemFoLVr12rPnj0W94ayNm3aVGbMxcVFffr0sahuYGCg\nbrvttjLjW7ZsUUlJiZkjUF0ES2sG8+vKY379O+bXAAAAcFTt76qvvtGNTcacMVRKmBSoHXx8fDRl\nyhSz21asWKHk5GSrnPerr77S8ePHy4z7+/tr4sSJVjmnvfjhhx/04osv6uLFixXu17RpU3Xr1k3h\n4eGKjIzUyJEjNWLECA0aNEjBwcG64YYbrvvm+x07dui1116z6XUoe7Vr1y6uGwMAAJvhkfd2Zteu\n7/XKK8+WO3G+/fau6tEjRDfe2Eb+/o10+XK+Llw4p19++UnfffeN2ccrpqYe0fPPP6F33vlMPj6+\nleqjTp2yK83l5+epsLBQCxaUfWRlZRQWFurVV5/T8eNHzW738/PXXXf1Vps2t8jfv5G8vesqLy9X\nFy6c0/79e/X995uVk1N21bzdu7dr9ux3NHnyM9XqyxKff/6xli6db3abm5ubOnXqqh49+iowsKUa\nNgxQcXGRLlw4p2PHDmvbtiT9+uvPZY4rLi7Wu+++ovr1G6hXrz9Xqg9rvF4AHMPu3bv1+uuvl/v/\nRqdOna5cvPH399fly5d14cIF/frrr9q+fbtSU1PLHJOamqrp06frrbfeqvRje8ytUJqfn6/CwkJ9\n+eWXVftLoVKKi4u1bdu2MuPt27dXw4aWP9KtZ8+eZS7InjlzRsnJyWrXrp3F9WGKRxpZD/Nr5tfM\nrwEAAFDbdOrVQJK0KebslbHSUOk9D7RQwA1l30DlSAiTArVL9+7d9ec//1kbN240GS8pKdG7776r\n9957T+7uxt3yPnr0qGJiYsxue/zxx1WvXj2L6vv7+6tOnToW1aisBg0aVGn/1NTUCu83tGnTRhER\nEbrzzjsrdQ360qVL2rVrl1asWKH9+/eb3Wfnzp367LPP9Mgjj1Sp19qi9Lpx165d9cgjj3DdGAAA\n1AgCpdXk6emphQsTr3yenn5af/3r2DL7RUWNUVTUmDLj5n5RuHTpot588+9mJ+mtW9+sKVOeU8eO\nXcz207NniCZMmKING1brww/fVFZWpsn2o0cP6YMP3tD//u//XffvJpkPBuXl5WrLlg06e/aPRynf\ncsufNGDAUN14402qX7+B8vPzdPp0mpo3v6HM8cuWLTB7g9fd3V0TJvxVQ4feV+EvfNnZWZo79wOt\nWLGkzLblyxdr0KARat36ZrPHWuP12rnzOy1YMMfs+Tp27KInn5yuG25oZXZ7cHAf3XffWP3yy0+a\nOfP/ygQVSkpK9Pbb/9Btt3VQQEATszWuZunrBcD6PD099cUXX1z5/OzZs3r66afL7DdixAhFRkaW\nGTf38/HSpUuaOXOm2f83WrVqpccff1wdOnQw20+PHj300EMPaePGjZo1a5ayskxXgTt27Jg+/vhj\nTZ069bp/N8n8z8m8vDxt27ZNZ8/+cfPilltuUb9+/XTjjTeqfv36ys/P15kzZxQYGFip8+APe/fu\n1YULF8qM9+jRw5D6vXr10ty5c8uMb968mUCpFdXmYCnz698xv2Z+DQAAABjBWUOlhEmB2umRRx7R\n7t27lZGRYTJ+9OhRLVmyRKNGjTLkPMXFxXrvvffMXkvq27evIddeX3jhBbu9vvrRRx8pL6/satYe\nHh6aPHmy+vXrd91VR69Wv359hYSEKCQkRJs3b9a///1vZWeXfXPzihUr1L9/f7Vu3dqi/h1NSUlJ\npf89S1csrY3XjQEAQM0jUGqBRo0Crvy5oOCy2X28vb1N9qvIBx+8ofPnyz5iuH372/Xyy+9dd/Uj\nFxcXhYYO0s0336bnnpus8+fPmWxfv36VwsOH6/bbu163FxcX1zJj+fn52rBhlSTJ1dVVEyb8VdHR\nZW8Ot2vXscxYQUGBYmPNr1D35JMvKCws4ro9+fj46okn/p88PDy0dOkCk20lJSX68stP/z979x0f\nVZn3//89aaQXShJCF0joRnroK7pYyCpYKMttW6WJ6FdR8dbdRVcRdW3Agro2kJ9lVVZRbFiQjgRF\neg9IQighhfQ6vz+4gwxzJpnMTGYmyev5ePDQfM4517mSgZkr57zPdemRR+baPN6Vr1dZWZkWLpxn\nuG3o0JF69NF5dv0C0K1bL82fv0T33/8XpaYetNhWdYP/wQcfr7EdV79eAOrGhU/slpWVGe4TGBho\n9+ySr7zyirKysqzqXbt21eOPP17j7KImk0mXX365OnbsqEcffdQqnPj999/rj3/8o3r27FljX3x8\nbL0PfX9+++23366xY8da7We0tDpqtmXLFsP6wIEDXdJ+y5Yt1bZtW/32229W523oyzp5g8YaLGV8\nzfjaCONrAAAAwDENLVRKmBRovMLDwzV9+nTNnWt9neKDDz7QkCFD1KaN9cO4tbVy5UrDmTQjIiI0\nZcoUp9v3Zvv27dOvv/5qVffx8dETTzxh132C6gwdOlRxcXF6+OGHVVRUZLGtsrJSb775pp54wr4H\ntxuzxnrdGAAAuJf1XTJ4xJ49O7R69ddW9aZNm+uJJ16yeylN6dxsS7NmGd8kXbp0sV1tGAWDMjNP\nauvWTZKk22+/2/DmqS1btqw3vJnfvfuldt3svtBtt92tiIhIq/qmTWtsLsHgaqtWfa7jx9Os6h06\ndNKDDz5Rq6fzgoND9PjjL6pJkyZW277//ku7Zjhy9esFwPvt3btXP/74o1W9adOm+vvf/273UvXS\nudlMjWZLlaRly4yXHb6Y0fteZmamfvnlF0nSrbfeahgmheP27NljVYuIiHDpbK9du3a1qqWnpys3\nN9dl50D1tm7dqqlTp2rKlClKSUnxdHfqFcbX9mN8bY3xNQAAABqKnoMjNPzGFha1qlBp5jHrWei8\nla0w6aXDIwmTAo3E4MGDNWTIEKt6WVmZFixYILPZbHCU/U6fPq0lS5YYbps2bVqtl4+vb9asWWNY\nHzNmjNNh0iodO3bUjBkzDLdt3bpVJ0+eNNwGa1w3BgAAdYlAqZdYufJjw/o998xWWFh4rdvr02eg\nhg27wqq+Y8cvOnz4QI3HGy2NmZV1RuXl5erSpYduuumWWvVn+/athvWRI6+tVTvSuWUVLr/8aqt6\ncXGx9u3bVev2HLFixQeG9dtuu9vwxnVNYmJa6qqrrreqV1ZW6quvPqnxeFe/XgC835dffmlYnz59\nusLCwmrdXu/evQ0vxu3cuVOpqak1Hm/0PpSdna3y8nIlJCTohhtuqHWfYFtZWZkOHjxoVXf1UklG\ngVJJhk/po25xgbD2GF/bj/G1NcbXAAAAaEjqe6i0ujDp0OvtW8ECQMNgK9i5a9cuffHFF061vWjR\nIquZM6VzQdahQ4c61XZ9sHPnTsP6Nddc49LzjBgxQvHx8YbbqlY8g/24bgwAAOoCS957gfz8PK1Z\ns8qq3rZtBw0aNMLhdq+7brzWrPnWqr569de65JLODrc7YcIdtZohSJLi47vpT3+6WdnZZ87/yco6\n4/BykF279jJc4vPw4f3q3v1Sh9q015Ejh6yWz5TOzVw1cKDjv1Bef/0Effqp9Y30tWu/0623TnO4\nXUdeLwDeLT8/X2vXrrWqt2nTRklJSQ63+6c//Unr1q2zqv/444/q0KGDw+2OGzeO9yEXO3TokMrK\nyqzqtgKgjkpISDCs79mzRwMGDHDpuWAfljSyD+Pr2mN8bT/G1wAAAKiPeg4+F8D68aPT52tVodLL\n/9xKzdsEeqpr1SJMCuBCkZGRmjx5sp577jmrbUuWLNHAgQPVrFntZy1eu3atfvrpJ6t6eHi4pk+f\n7lBf65v09HSrWtOmTRUbG+vyc40aNUr79+9XTEyM2rdvf/5P586OX19r7LhubMlsNmv37u36+efN\n2rdvp44fT1N29hmVlBTLx8dHQUHBat48Wq1bt1O3bpdqwIChiotr7bb+5ebmaP36H/TLL5uVmnpQ\nWVmZKi4uUkBAE4WFhat582h163apLrusv/r0GejSa5EHDuzVunXfadeubUpPP6b8/LOqrKw8/zNp\n166j+vSIZliUAAAgAElEQVQZqKSk4Q5NzAAAaBgIlHqBTZvWqKSkxKp+9dVjnGq3R49ERUfH6tSp\nExb1n35apzvuMF5OoCbh4RHq3996BruaXH751YazHjmqVau2hvXc3ByXncOWLVvWG9YHDhzmVLtx\nca3VqlUbpacfs6gfO3ZEmZmn1Lx5dK3bdPT1AuDdNm/ebPi5cdVVVznVbvfu3RUdHa1Tp05Z1Lds\n2aLbbrvNoTbDw8PVr18/p/oFa0eOHDGsX3LJJS49T5s2bdSkSROrv2+2zg/3qbpA2Lt3b02ePLnR\nXyC8GOPr2mN8bR/G1wAAAKjP6luolDApACMjRozQmjVrtHnzZot6QUGBFi9erMcee6xW7eXn5+vV\nV1813DZlyhRFRkY63Nf6orKy0nB21qioqDo538iRIzV8+HAFBQXVSfuNWWMPlpaXl+vLL/+rjz56\nRydOHDfcp6KiQmVluTp7NleHDx/QmjXf6pVXnlePHomaMOEv6tvXsYlb/va3+7R5s+WkLVdffb3u\nu+/396Ti4mItXfqKPv/8Q8Pr10VFhSoqKtSpUye0e/d2ffTRO2rX7hLdccc9Tj14L0mHDu3XK688\nb3Plq7y8s8rLO6vU1INavfprBQYGKjn5Zk2aNFmBgd41RgQA1D0CpV7A1jKSiYnOB3B69eqjb79d\naVFLTT2o/Pw8hYY6siTyAPn4+DjdL2eFhIQa1vPycuv83Dt3bjOs9+s32Om2L7tsgNUNb0navXu7\n4RKrNfGW16smU6ZM8XQXIOmJJ57wdBdgp/379xvWL73U+Rnkevbsqe+++86iduTIEeXn5ys01Pi9\ntzqJiYn14n2ovjlx4oRh3dVPi5tMJkVHR+vYMcvPppMnT1p8zfu45/z888+aOnWqwsLCdEPivz3d\nHa/B+Lr2GF/bx1teLwAAAMBR9SVUSpgUQHVmzJihnTt3qqCgwKK+ceNGrVu3TkOG2P8w6Jtvvqns\n7Gyr+oABAzRihOMr3dQnJpNJfn5+Ki8vt6gXFxfXyfn8/f3l7+9fJ23jnMYYLD1wYK+ee+5vOnr0\nsEPH79y5TY8+eo+GDbtC9933mM3rpbYEB1vvX1j4+3tURka6HntsptLSjtaq3aNHD+vvf/9/uu22\n6Zow4Y5aHVvlq68+1cKF8wxXvrOluLhYH364VJs2rdFTTy1QTExLVm0CgEaEQKkXMLrhHRQUrPbt\nOzrddrdul1rd8Jakgwf3OnRDPT6+u9N9coWAgCaG9dLS0jo/96FD+wzrHTsaLwtcG7Ze86NHD0mq\n/Q1vb3m9arJ1q/GTUACMGQVKg4KC1K5dO6fb7tq1q1WgVDq3xLojgdX4+Hin+wRrFwc6q7Ro0cLl\n54qJiakxUMr7uOfl5eV5ugtehfF17TG+to+3vF4AAACAM7w9VHomnTApgOo1bdpUd911l1566SWr\nba+++qoSExPtmiBh+/bt+vrrr63qISEhmjHDsdVo6iOTyaTw8HBlZWVZ1I8fP67c3FxFRER4qGdw\nVmMJlm7YsFrz5j1qOOtnba1Z861SUw9q3rxFtVrhqEkT6+urRUWFkqTTp0/qwQcn6/Rp43s79nj7\n7UVq1aptrR+S/+abz/Tii/9w+LzHjh3RrFl3af78pTxoDwCNCIFSDysvL9fhw9bBoOjoWJd8IMfF\ntTasp6UddeiGt62lMBuL4uJiw4Fe06bNXbIsQ2xsK8O60axK9mjsrxfQEJWXlys1NdWq3qJFC5d8\nbrRs2dKwnpaW5lCgtFUr4/c1OMcoUNqsWTMFBAS4/FzR0dYXTEpKSpSTk9MolntC/cP4un5hfA0A\nAAB4hreGSs+kF+v7ZdZh0h6DIwiTArBw5ZVXau3atVYPu2dlZenNN9/UzJkzqz2+tLRUCxcuNNw2\nefJkNW3a1GV9rQ9atmxpFSg1m8367LPPNGnSJA/1Cq7SkIOlP/+8WU89Ndtqht0qvXr1VlLSCLVt\n20FRUc1UWlqi7Owz2r17uzZtWqNjx45YHXPs2BH97//O0Isvvmn3TKW+vtbRm+LiIpWXl+vJJx+2\nuAYaEhKq/v2HqEOHToqKaiZJOns2V0eOHNSWLeuVk2M9a7IkLVjwtPr2HaTg4GC7+nTo0H7Nnz/X\n5vauXXtqxIhRatOmvSIjm6qwsEDZ2We0fftWrV//g7KyMiVJp06d0Lx5j+q668bZdV4AQP1HoNTD\n8vLOGk4tXjVwcJatG6gZGekOtRcTYxw0clRlZaUOHz6g/ft367ffDuvkyQxlZ59RQUG+SkqKVV5e\nroqKclVUVKiiokKVlRUqLy+3OSCsa5mZpwzrtoIFtRUbG2dYrxqs1ZarXy8Anpefn2/jcyPKJe3b\nWjLd1hLrNTEKI8J5RkswNWvmmrHDxZo3N75Zk52dTaAUXonxNePrCzG+BgAAAGzrOThCFeVmrfvk\n9/FxVah05P+0UrNW7g2VVoVJy8usw6QjbnT9qiwA6r8ZM2Zo+vTpKioqsqh//fXXGjFihHr16mXz\n2Pfff1/p6dbXc/r27asrrqj9qib1XZ8+fbRrl/WqP//5z3/Utm1bDRs2zAO9gqs1tGDp2bO5eu65\nvxte22zfvqPuuecR9eiRaHjsoEEj9Je/3KPvv/9SixY9p/x8y1XAjh49rH/961k99NATdvXF19fX\nqlZaWqoPP1yqvXt3SpICA4P05z/fqTFjJsrf39+wndLSUi1b9po++OBtq21nz+bqxx+/0dVXX29X\nn+bPn2t4rTwsLFz33/83DRo0wvC4YcOu0NSpD+iDD97We++9obKyMm3btsVl19gBAN6PQKmHFRTk\nG9a3bduiUaPqbgCXm2v8VEtNgoLse9qlJgcO7NXKlR9rw4YflJub45I23cHWzy00NNwl7QcHGz/h\n5OnXC4D3KCgoMKz/+uuvuvbaa+vsvLm5uQ4d54rZ5WCtuLjYqhYYWDc3eYyWabHVB7iP2WyWyWTy\ndDe8EuNrxtcXYnwNAAAAVC9x+LmHRa1CpcvSdfkk94VKCZMCcER0dLRuv/12LVq0yGrbwoULtWDB\nAsPrm0eOHNHHH39sVQ8ODm5US91faMiQIVq2bJkqKyst6hUVFXr22Wd19OhR3XTTTXV2HRru1VCC\npf/617OGD45369ZLTz45v8bZRU0mk0aOvEYdOybokUemKyvrjMX27777Qldddb169epdY1+MVsc6\nefK43n//TUlSeHiE5s79lzp37lJtOwEBAbrjjhkqKMjX559/ZLX9u+9W2hUo3bx53fkg64X8/f01\nd+5Cxcd3q/Z4Pz8//fnPd6pTpy6aM+d+VVZW6ocfvqrxvACAhsH5NR/hlIKCvJp3qgN5eWcdOi4w\n0Llg0JkzmfrHPx7SjBmT9OWX/61XN7ulc9PSG3HVL0+22ikpcSy04+zrBcD75OcbB6W89by2wohw\nTklJiVWtrn7Wtj+brPuAumc2n7uxRpjUNsbXjK/taYfxNQAAAPC7xOGRGnLRcvLlZedCpWfS6/6B\nUsKkAJxxzTXXGM5Emp6ervfee8+qXllZqfnz5xvOaHjnnXeqRYvG+b7TqlUrjRo1ynCb2WzW+++/\nrylTpmj58uWGK2jVpS+++EIpKSlKS0sznG0Rjtu6daumTp2qKVOmKCUlxdPdqZU9e3Zo9eqvrepN\nmzbXE0+8ZPdS9dK52UxnzXrccNvSpYsd7mN2dpaKi4vl4+OjJ554qcYw6YVuuWWq4X2f/ft3q6Ki\nosbjP/vsP4b1226bXmOY9EIDBgzRrbdOs3t/AEDDwAylHlZYaDzTXF0rKyt16Dg/P8f/yhw7dkQP\nPjhZ2dlZDrdhMpnk7+8vHx9fmzef65Ktn5urbiw3aWJ8w7u01P2vFwDvdPHSPe7i6EUa3ofqhjsD\npcxQ6h2qZiQlSFozxte1w/i6dvhcAwAAQENlNFNpVai0LmcqJUwKwFkmk0kzZ87U3XffbXXddPny\n5Ro+fLg6dOhwvvb5559r3759Vu0kJibaDFQ2Fv/zP/+jbdu2KSMjw3B7Zmam3njjDb355ptKSEhQ\n3759lZiYqPj4eMPlvl3lb3/7m8XXkZGRiomJUUxMjKKjoxUbG3v+/6vqtpYTh7H6OGPpypXWswxL\n0j33zFZYWO1XP+rTZ6CGDbtCa9Z8a1HfseMXHT58QJdc0tmhfkrSmDET1bVrz1odExERqcTEftq8\neZ1FvaSkROnpv6lt2w42jpRyc3P088+brephYeFKTr65Vv2QpOuvn6BPP/3AcDZYAEDDxN2wRsro\nqbu6dOrUCc2ePd3mzW5/f3/17j1A3bsnql27jmrePFphYeEKDAySv3+A/Pz85Ofnd36q+DNnMjVx\n4lXu/Bb+j3GIo2q2MGfZaofwCABPc/fnBmyzFe4NCAiok/PZuvDGk+DuQZC0/mB87SjG1wAAAIC3\ncHeolDApAFdp2bKlbr31Vr322msW9YqKCr388st6/vnn5evrq1OnTmnp0qVWxwcGBmrmzJnu6q7X\nioiI0BNPPKFZs2YpNzfX5n5ms1l79+7V3r17tWzZMgUFBalLly7q3r27unfvrvj4eJetPmMkJydH\nOTk5hsHgKiEhIYqMjFRERIThfy+uRUVFEUJV/QmW5ufnac2aVVb1tm07aNCgEQ63e911460CpZK0\nevXXDgdKfX19dcMNkxw6Nj6+u1WgVJIyMtKrDZRu3brJcBbToUOvcGhyksDAQI0efaOWLn2l1scC\nAOonAqUe5u9vHP7o2fMyjR375zo7b3h4ZJ21bWTBgqeVmXnKqm4ymXTFFdfqttumq3nzaLf2yRG2\nfpFwdMlMe9upq5CQt3jlFQafgL1svQ/16NFD119/fZ2dNzy89k9zom74+/vLZDJZhaQcnW2vJvYE\nWBva+/jUqVM93YVaBUkHDhyo5ORkHfjKDR2rBxhfM762p52GPr4GAAAAHOWuUClhUgCulpycrHXr\n1mn37t0W9QMHDmjFihUaM2aMFi1aZLgK2B133KGYmBi39POBBx6o83MkJCTohRdecOjYuLg4vfji\ni3rmmWeqDWxeqKioSL/88ot++eUXSedWeOnUqZN69OihSy+9VL169XL7qi8FBQUqKChQenp6rY6L\njIxUcHCwQkJCFBoaquDg4PNfh4SEGP5/UFCQfH195efnJ19fX4s/VQ91X1irD6qCpb1799bkyZO9\nLli6adMaw5Xcrr56jFPt9uiRqOjoWJ06dcKi/tNP63THHTMcarNfv8Fq1qy5Q8e2atXGsF5QkF/t\ncbt2bbPRl0EO9UOS+vcfQqAUABoRAqUeFhISalgPC4tw6ukZb7Jt2xb99NN6w20zZjys0aNvdHOP\nHBccHGJYd9US1LaWGXXVkp/eytt+CWmsTp486ekuwA4hIcbvQ2FhYUpKSnJzb+ApAQEBVhdLjC6e\nuIKtdi98ipX3cdepTZB09OjRmjx5suLi4iRJB746WNfdqxcYXzO+vlBjHV8DAAAAzqjrUKmtMGnX\nAeGESQE4zMfHRzNnztTMmTOtHr5/5513VFFRoS1btlgd17NnT11zzTXu6ma9EBMTo+eee05ffvml\n3n333WpnKzVSXl5+fgbTjz76SMHBwerdu7cGDBigQYMG1enspc6qmv0U5/z888+aOnWqQkNDdeNl\nr3u6O+ft27fLsJ6Y2M/ptnv16qNvv11pUUtNPaj8/DyFhobVur2ePXs73BdbkxgUFRVUe9zBg3sN\n6wkJ3R3uS+fOXRQZGaWcnGyH2wAA1B8+nu5AYxcZ2dSwXtNTJfXJqlWfG9ZvuOHPDt/sdtWMRbUV\nERFlWM/Lq90vUrbk5+cZ1qOimrmkfQD1X2Sk8S+PBQXV//KIhsVoSZK6CpQWFxt/5nrzRb/6qGrG\nWXuDpCtWrNCcOXPOh0nxO8bXjK8vxPgaAAAAcEzi8EgNud5yNq2qUOmZdMd/f6guTDpynPevsgDA\nu7Vp00Z//rP1CjUlJSV66623rOpNmjTRvffea9c1ucbG19dXo0eP1ptvvqlp06apQwfby2vXpLCw\nUOvWrdPzzz+v2267TcuWLSO0Wc/k53vXtVWjQGlQULDat+/odNvdul1qWLcV0qxJ585dHO5LQIDx\n8vQ1rVj322+pVrWQkFA1a+bcgztt217i1PEAgPqDQKmHRUZGGQYysrIyDfauf8xms1JSNljV/fz8\nNGHCXxxu11M/nxYtYuTjY/3P5vjxYy5p31Y79WG5UgDuERERYRgmzM7micDGxGjsYCv46Sx7ZiiF\n4wiSuh7ja8cwvgYAAABwMVeHSmsMk5LnAuACY8aMUefOne3a99Zbb1XLli3ruEf1W2BgoEaPHq2F\nCxdq0aJFmjRpkhISEgyv59gjLy9P7733nu644w698cYbdXZdGw1XeXm5Dh/eb1WPjo51+O/lheLi\nWhvW09KOOtRe06aOLXcvnbvma6TqvoKRs2dzVVhoPQlNbKzz9xRatWrjdBsAgPqBJe89zGQyqXXr\ndjp4cJ9FPT39NxUXF9f72b/OnDltOO159+6JCgsLd7jd/ft3O9Mth/n7+ys2Nk7Hj6dZ1HNyslVQ\nkG9ziVV7XdxulTZt2jvVLoCG49znRmsdOnTIop6ent4gPjdgn6ioKJ06dcqidubMmTo5V2amccgs\nKsp4VkHYx5ml7VE9xteOYXwNAAAAwEji8HOr5az75PfrA1Wh0ssntVKzVvb9jkWYFIC7+Pr66r77\n7tO9996r8vJym/t169ZNycnJbuzZOXFxcXX+sH6rVq3qpN127dqpXbt2mjBhgvLz87Vr1y7t3LlT\nu3bt0qFDh6r9eV+spKREy5cv1+bNm3mAHrWSl3dWZWVlVnVXrUgUG2v87ycjI92h9oKDnbu+WVvZ\n2cb3imyt7FUbMTH8OwWAxoJAqRfo3Lmb1Q3vyspKHTlyUF269PBQr1wjOzvLsN6unXPToW/atMap\n450RH9/N8Mb0vn271Lv3AKfaPnRon2G9Y8cEp9oF0LB07tzZKlBaWVmpo0ePKiGB94vGIDY2Vvv2\nWX5mnDlzRmVlZfL393fpuS4OrkrnZieNjIx06XkaC4Kk7sH4uvYYXwMAAACwJXF4pCrKzNq48veA\nQm1CpYRJAbhb+/btNX78eC1btsxwe0BAgO69916XzGZYWw888IC6dHF8CWxvERoaqgEDBmjAgHPX\nboqLi7V//37t3r1bu3bt0u7du+2afTQ9PV0PP/yw5s2bZzMI26lTJ2VmZionJ8el3wNsq7qO7Y0K\nCvIN69u2bdGoUX3r7Ly5uY6tFOju1d7y8s4a1kNDw5xuOzAwyOk2AAD1A4FSL9CrVx99+eV/rerr\n1n1f72945+e7fsBy7NgR/fprisPHO6tnz95avfobq3pKyganbnibzWZt3brRqu7r66uuXXs53C6A\nhqdnz5766quvrOrr168nUNpIxMTEGNZPnTrl8qfPT548aVWLjmap6NoiSOpejK9rh/E1AAAAgJr0\nueLcSiW1DZUSJgXgKTfddJPWrFmj3377zWrbhAkT1Lq18bLWcExgYKB69eqlXr3OXXOpqKjQ7t27\n9dNPP2n9+vWG15mrZGVl6emnn9YLL7yggIAAq+3vv/++JKmsrEyZmZk6deqUTp8+rczMTJ0+fdrq\n64IC6+W+YZ/aXMf2lIKCPI+c11ZQ09sUFxcZ1l0RBiVQCgCNB4FSL9C//2D5+flZLQPw44/f6Pbb\n75avr6/DbW/evE5vvbVQSUnDNWDAUCUkdHfrANDWoKKkpMThNpcufcXhY11hwIChWrBgnlV948Yf\ndeedjj/NuHv3duXmWj9Z16tXHwUFMTgD8Lu+ffsafm6sXbtWt956q1OfG1u2bNHbb7+tgQMHqn//\n/oqPj/fqCweNVWxsrGH95MmTLg2Ums1mwxlKbZ0f1giSegbj69phfA0AAADAHrUNlRImBeBJfn5+\nateunWGg9JJLnFvpBTXz9fVVz5491bNnT91+++1KSUnRu+++qwMHDhjun5qaqk8//VQ33XSTzTb9\n/f3VsmVLtWzZstpzl5aWKicnRzk5OcrNzVVubq7V1xfX8/ONZ71sLOpDkLRKYaFnAsNlZaUeOW9t\nlZeXGdZ9fBy/Jl7F3bOtAgA8h0BpHauoqKhxn9DQMPXvP0QbNqy2qJ86dUJffLFcycm2B841+fDD\nJUpNPajU1IN699031LRpc1133TiNH3+7w23WRlhYhGH9+PFjDrW3ceOPWrPmW5vbKytr/nlXx57X\nq0WLGPXq1Vvbt/9sUT9+PE1r136n4cOvdOjcH3641LD+hz9c5VB7AOon+z43QtWvXz9t3Gg569qp\nU6f05ZdfavTo0Q6f/6OPPtKRI0d05MgRvf/++2ratKmSk5N18803O9wmXK9du3aG9UOHDql3794u\nO09aWpphSM3W+fE7gqR1h/E142t7Mb4GAAAAXM/eUKmtMGl8nzDCpADQyPj4+Kh///7q27evli9f\nrrfeestwv08++UTXXXed4SyltREQEKDo6Ohar7SVn5+v/Px8FRYWqrCwUEVFRcrLy1NhYaEKCgrO\n//fC/y8sLFRpaanKy8tVUVFx/k/V1xfXKyoqvCq8Wp+CpJ528eQF3spsNtva4nTbpaX1I1QLAHAe\ngVIX8fMz/lHm5GTbdfwNN0yyuuEtSUuWLNbAgcPUooXx0rbV+fTTD7Rjxy8WtaysTJs3oetCbGyc\nAgMDVVxcbFHfvn2riouLFRhovAyOkUOH9uvZZ/8m6dzMTBUV5Sors3zCpqDAvgG4s6/XmDETrW54\nS+dmd+rff0itZzzauXObNm780aoeGRmlESNG1aotAPWDrdnxcnNz7Tp+zJgxVoFSSVq2bJkGDBig\nFi1a1LpPn332mXbu3GlRy8rKUliY48soo2507NhRAQEBVr+8792716Xn2bdvn2G9a9euLj1PQ0KQ\n1HUYXxtjfG0fxtcAAABA3akpVCrJZpj0yj/HECYFgEbKx8dHN954owICAvTqq69abc/JydHu3buV\nmJjogd6dm8wjNDS0zs/Tt2/fOj9HTWpzHXvgwIFKTk7Wga/c0DE7+PsbB4579rxMY8f+uc7OGx4e\nWWdtu5Kvr/F1Wnse/K9JSUlxzTsBgB2OHTuiO++80aoeEhKq5cut7+152/GNAYFSFwkODjGs79u3\n07B+sR49EtW//xD99NM6i3pe3lnNnj1d//znvxUV1dTu/nz33Rd65ZXnrepNmzbXyJHX2N2Os/z8\n/JSQ0EO//ppiUS8oyNd///uuJky4w652fv55s556avb5Kexvv/1urVz5sX77LdViv/R062UrjDj7\neiUlDVdCQnft27fLop6WdlTPPfc3PfbYM3YvzXn8eJqeeGKW4baJE+9k6niggQoODjas2wrwXax7\n9+7q16+ftmzZYlHPy8vTY489pmeeeUaRkfb/cvv999/rtddes6o3bdpUf/jDH+xuB+7h7++vTp06\naffu3RZ1VwdK9+zZY1gnUGqNIKnrMb42xvi6ZoyvAQAAgLrX54oomc3Spi8sQ6XfvZMus6TKcssw\naZd+YbpiYu0f7AMANDx/+tOf9O233+rQoUNW23bs2OGxQGlj4Mx17ANfHazr7tklJMQ49BsWFqFB\ng0a4uTfex9a1z+LiIqfbJlAKAI2HfXfkUKPg4BBFRFgHdw4fPlDtEpIXmjHjYYWGWs8Cl5Z2VNOn\nT7SrnezsLL300pN69tm/qbKy0mr7PffMrtWsRa5g6wb7O++8qlWrPq/22DNnTuvll+fqkUfuVn5+\nniQpPr6bkpNvMpxVKjX1oDIzT9XYJ2dfL5PJpJkz/9dwJqb163/Qww9P1cmTGTW28/33X+q++25T\nbm6O1bYuXXpo9GjrRDyAhiE4OFgREdYz2qWmpmrt2rV2tTFt2jTDp2XT0tJ0zz332NVOTk6O5s+f\nr+eff97wc2P69Olu/9yAfYxCnTk5OcrIqPnzx15GAdVWrVoZ/t1trKqWj7H3AtyKFSs0Z84cwqR2\nYHxtG+Nr2xhfAwAAAO7T98ooDbymmUWtotxsFSZN6EuYFABgadQo4xVkTp2q+ToUaq8hXceOjDSe\nJMDelZYaupAQ41UHXfHzycrKdLoNAED9wAylLpSQ0F0//bTeqj537iNateozde7cVSaTSWfOZOrY\nsVRNnHin+vQZeH6/mJiWevjhJ/X44w+ovLzcoo2srEw99dRsvfVWayUljVDHjvGKimomPz9/FRTk\nKS3tqHbu3KaUlA1Wx1a57rpxHnkq5/LLr9bSpa9Y3YiuqKjQP/85R1999YmGDr1Cbdq0V5MmgcrP\nz9Nvvx3Wr7+m6JdffrKYfj0sLFyPPjpPvr6+io/vpq1bN1m0aTabNX/+XM2e/ZTNWZKqOPt6deqU\noOnTH9T8+U9btbF9+8+6444x6tt3kJKShismpqUiIqJUWFignJws7dmzQxs2/KDjx9MM+9a0afPz\n3yeAhqtz585KSUmxqj/zzDP69ttv1blzZ5lMJmVlZenYsWMaP368evfufX6/mJgYzZo1S08++aTB\n50aW5s2bpyVLligpKUkdOnRQVFSU/Pz8VFBQoLS0NO3evVtbt261+bmRnJyspKQk137TcJm+ffvq\n448/tqpv3rxZ119/vdPtnzx5UkeOHDE8L5iR1F0YXxtjfM34GgAAAPAWfa+MkskkbVx5xnB7fB/C\npAAAa61atTKsnz171s09adga4nXsyMgoBQYGqrjYcrZMwo7n2FqVyxU/H1vXXgEADQ+BUhf6wx+u\nNryBajab9dNP6622GU0J3r//YD3yyFw9++xfVVJSYrX9+PE0ffzxslr37corR2vaNONlH+uav7+/\nHnzwcc2ePf38008X2rlzm3bu3FZjO0FBwZoz5wXFxp4bxA4cOEzvvfem1X6bN6/ThAmj1KpVWxUU\n5GvAgKGaPv1Bq/1c8Xpde+0NKijI1xtvLLDaVl5erk2b1mjTpjU1fm8Xio6O1dy5CxUdHVur4wDU\nP7X0ywkAACAASURBVH/4wx8MA6Vms1kpKSlW24w+F/r166eHHnpIzz//vOH2jIwMLV++vNZ9Gzly\npKZMmVLr4+A+PXr0UFRUlLKzsy3qGzZscEmgdP16689ISRo6dKjTbddnDfECnDdjfG2M8TXjawAA\nAMCb9LkiSmaztOkLy1BpQp8wXTmJMCkA1CdnzpxRZmamEhIS6vQ8YWHGsygarRCE2mvI17FNJpNa\nt26ngwf3WdTT039TcXFxo19179ykCX5WkyTYs/pTTY4fP+Z0GwCA+oEl711o+PArFR/fzel2hgy5\nXM8//4batbvE6baaNGmiGTMe1qxZc+waMNaVxMR+mjnzfx2eESgmpqWeeWaxevRIPF/r0qWHxdcX\nKi4u1qFD+3XixHGVlZUZ7uOq1+vmm2/V3//+T8MlPmtr4MBhWrhwmdq0ae90WwC839ChQ9W5c2en\n2xk8eLCeffZZtW3b1um2mjRpomnTpun+++/36OcGaubj46NBgwZZ1Xfv3m0VMnXEhg0brGotWrRQ\nly5dnG67PmpISwLVJ4yvbWN8bR/G1wAAAIB79L0ySgOu/n1GLMKkAOD9KioqtHnzZi1btkxz5szR\npEmTdMstt+ixxx4zfDDblWxdww4ODq7T8zZ0jeU6dufO1tcgKysrdeTIQQ/0xrv4+PioZcvWVvXC\nwgKdPn3S4XbPns1VWtpRZ7oGAKhHCJS6kK+vr/7+93+qQ4dOTrfVuXMXLVr0ru65Z7ZatWpT6+OD\ngoJ13XXj9NZbnyo5+San++MK11wzRk8//a9a/XwCA4N0ww2TtHjxe0pI6G61/YEH5qhFC8cuSrny\n9Ro0aIT+/e+PNG7cbQoJCa318b169dZTTy3Q44+/4JIb5wDqB19fXz322GNq3975kEunTp20YMEC\nTZ8+3aFf/IOCgpScnKzXX39do0ePdro/cI8RI6yX2jabzVq7dq1T7Z48eVJ79uyxqg8dOrTRBY0b\nywU4b8X4unqMr21jfA0AAAC4X78/NlX/UU2VOCKSMCkA1AO+vr569dVX9d5772nLli3nQ56FhYXa\nuHFjnZ778OHDhvVWrVrV6XkbqsZ2HbtXrz6G9XXrvndzT7zTJZcYT2azZ88Oh9v8+efNhqtlAQAa\nJpa8/z9z5y50STvNm0drwYJ39PXXn2rt2u+UmnpA+fl5CghoorCwcIWHR6pjx3h17txVXbv2qrYt\nPz8/jR59o0aPvlF79+7U1q2btG/fLh0/fkxZWZkqLi6SyWRSUFCwQkPDFBfXRu3bd1KvXn3Uu/cA\nBQQEOPx9TJs2q06W8Lz00r5avPg9paRsVErKBu3cuU1ZWZnKy8uV2WxWSEioWrSIVYcOndSnz0D1\n7z+k2hvIcXGttXjxe/rvf9/Vpk1rdPx4mkpLSxQUFKyIiEi1adNBl13W3+bxrny9IiIidccdMzRp\n0mRt3bpR27dv1cGDe5WRka68vFyVlJTIz89PwcEhatEiRm3adFDXrj01YMDQ88uMOqquXi8Atv3j\nH/9wSTvNmzfXSy+9pG+++Ubr169XamqqCgoKFBAQoLCwMIWHh6tDhw7q1KmTunbtWm1bfn5+uvba\na3Xttddq3759+vnnn7V//35lZGQoKytLxcXF//e5EaSQkBDFxcWpffv26tmzpxITE5363JgyZYqm\nTJni8PFwTLdu3dS5c2cdOHDAor5ixQolJyc7HP5csWKFVc3X17dRho0b4pJA7sL42hLja8bXAAAA\nQGPQ/6qmNe8EAPAagwcP1vLly63qS5cuVVJSkpo0aeLyc5rNZn3/vXHwr6b7ILDUkJe2r07//oMN\nl3X/8cdvdPvtdzu8qpMkbd68Tm+9tVBJScM1YMBQJSR0r3cTbXTrdql+/HGVVX3r1o0aNuwKh9pc\nu/ZbZ7sFAOe1adNeX3+dUm+PbwwIlNYBf3//8zeqXaVLlx7q0qWHy9rzJJPJpH79BqlfP+tleh0R\nFhauW26ZqltumerQ8a5+vQICApSUNFxJScNd0h6Ahs/f3/98ENRVEhISlJCQ4LL24L3Gjh2rZ555\nxqKWkZGhLVu2qH9/26EvW4qKirRqlfWFhqFDhyompnHNLlLTRaKGdAHO2zG+rh7jawAAAAAAADhi\nxIgRhoHSkydPavHixbrvvvtcfs5PPvlEx44ds6qHhISoZ8+eLj9fQ9RYg6RVQkPD1L//EG3YsNqi\nfurUCX3xxXKnVpj68MMlSk09qNTUg3r33TfUtGlzXXfdOI0ff7uz3Xab3r0HGNbXrv1OU6fOUlBQ\nUK3aO3bsiNav/8EVXQMA1BMseQ8AAFCPDR482DDo+cknnzjU3qpVq1RQUGBVHzNmjEPtNUQNYUkg\nAAAAAAAAAOjYsaOGDzd+iHfVqlVavHixysrKXHa+1atX6+233zbcNmrUKAUGBrrsXA1RY1vavjo3\n3DDJsL5kyWKdPn3SoTY//fQD7djxi0UtKytTYWERDrXnKW3bdlD79h2t6gUF+frwwyW1aquyslKv\nvPI8y90DQCNDoBQAAKAe8/X11cSJE63qv/76q7Zv316rtoqLi/Xhhx9a1ZOSktSpUyeH+9hQNPQL\ncAAAAAAAAAAan9tuu81mkPPzzz/XrFmzan2t+WJnzpzRwoUL9dxzz1ktUy5JkZGRGjdunFPnaMgI\nklrr0SNR/fsPsarn5Z3V7NnTlZ2dVav2vvvuC73yyvNW9aZNm2vkyGsc7qenXHPNWMP6u+++oa1b\nN9nVhtls1quvvqCUlI2SZPN9grApADQ8LHkPAABQz40cOVIrV67U/v37Leqvv/66XnrpJfn42PcM\n0YcffqisLMuLLAEBAbrzzjtd1tf6ICUlxdNdAAAAAAAAANAAPfnkk/L393fb+YKDg/Wvf/2r2n2i\no6M1e/Zs/eMf/1BFRYXV9oMHD+qRRx5Rp06dNGjQIPXu3Vvt27ev8fvIysrSjh07tGnTJm3atEml\npaWG+/n6+urhhx9WaGio/d9YI9HYl7avyYwZD2v69F+Vn59nUU9LO6rp0ydq2rRZGjbsimrbyM7O\n0pIli/Tll8arvt1zz+x6OXPuqFHX6YMP3taZM6ct6mazWX//+//T7bfP0HXXjZOfn3Fk6NixI1qw\nYJ5+/fX3+yUTJ96pN99caLUvgVIAaHgIlAIAANRzJpNJU6dO1f33329RP3TokL777jtdeeWVNbZx\n+vRp/fe//7Wqjx07VrGxsS7rKwAAAAAAAAA0VtnZ2W49X0hIiF379evXTzNnztT8+fMNQ6XSuWDp\nwYMHtXTpUvn4+CgmJkbNmzdXkyZNFBgYqPLychUVFamwsFDHjx9XQUFBjef18/PTgw8+qF69etXq\n+2roCJLaJyampR5++Ek9/vgDVjPfZmVl6qmnZuutt1orKWmEOnaMV1RUM/n5+augIE9paUe1c+c2\npaRsMJw1V5Kuu26cBg0a4Y5vxeUCAwM1deoDeuqp2VbbysrK9NprL+o//3lbgwdfrri4NoqIiFRB\nQb7OnDmtX375SQcO7LE4ZujQkerff4hhoLSiwvjnBwCovwiUAgAANAAJCQkaNWqUvv76a4v6kiVL\nNGDAAIWHh1d7/Ouvv66SkhKLWnR0tG666SaX9xUAAAAAAAAA4F2uuOIKtWrVSs8++6xOnTpV7b6V\nlZXKyMhQRkaGw+dr2bKlZs2apS5dujjcRkNDkLT2+vcfrEcematnn/2r1T0OSTp+PE0ff7ys1u1e\neeVoTZs2yxVd9Jhhw67Qrl3j9ckn7xtuz8nJ1sqVH9fYTlxca91776MqLDQOidsK5AIA6i/71j8F\nAACA17vrrrvUsmVLi1p2dnaNSxr98MMPWrdunUXNx8dHs2bNqpdLuQAAAAAAAAAAaq9r165asGCB\nxo0bZ/fsprUVEhKiv/zlL1q8eDFh0v9TtWS4vUHSFStWaM6cOY0+TFplyJDL9fzzb6hdu0ucbqtJ\nkyaaMeNhzZo1x67Xw9tNnfqAxo6d6PDxbdt20HPPvaawsHCFhoYZ7lNSUuxw+wAA78QMpQAAAA1E\nUFCQHnzwQT300EMWT4SuW7dOq1ev1ogR1kuznD59WosXL7aqjx8/Xt27d6/T/gIAAAAAAAAAvEto\naKhuueUW3XDDDfr666+1efNm7dmzRxUVFQ636evrq169emno0KEaPHiwQkNDXdjj+osZSV2nc+cu\nWrToXX311Sdavvz/U3r6sVodHxQUrD/+MVnjxt2uZs2a11Ev3c9kMmnKlPuVmNhf//73Szp27Ihd\nxwUGBuraa2/ULbdMPT/xSEhIqPz9/VVWVmaxb0FBvsv7DQDwLAKlAABJ0rXXXuvpLpxX9Qu0N3ns\nsceUlJTk6W40SNdff73VL5+eVN///iUkJGjSpEl6++23LeqLFi1St27dFB0dfb5WWVmpF154QQUF\nlsuUdO/eXePHj3e+4wAAAAAAAADgIbNnz9bs2bM9cu558+Z55LyuFBISorFjx2rs2LHKz8/Xjh07\ndPToUaWlpSk9PV1nz55VcXGxioqKVFpaqoCAAIWEhCgoKEjBwcFq3bq12rdvr3bt2ik+Pl4RERGe\n/pa8DkFS1/Lz89Po0Tdq9OgbtXfvTm3dukn79u3S8ePHlJWVqeLiIplMJgUFBSs0NExxcW3Uvn0n\n9erVR717D1BAQIDD5542bZamTZvlwu9G6tq1p77+OsUlbQ0YMET9+w/Wtm1btGnTGu3du1MZGWkq\nKMiX2WxWUFCwmjePVvv2nXTZZf01aNAIhYdb/5v9/PONLukPAMC7ESgFAABoYG688Ualpqbqxx9/\nPF8rKCjQP/7xDz333HPnnyZ96623tH37dotjo6Oj9cgjj8jX19etfQYAAAAAAAAAeKfQ0FAlJSUx\n8YYL1RQmJUjqnC5deqhLlx6e7oZXMZlMuuyy/rrssv6e7goAwMv5eLoDAAAAcC2TyaT77rvPasn6\nw4cP6/nnn5fZbNaqVau0fPlyi+0hISGaM2eOoqKi3NldAAAAAAAAAACgc0HSFStWaM6cOYRJAQCA\nRzBDKQAAdggNDSVkB49x9O/fc889p7vuukvp6ennaxs2bNDChQv17bffWuzr5+enuXPnKjEx0en+\nAgAAAAAAAAAA+/Xu3ZsQKQAA8AoESgEAkqQffvjB0104Lz8/X4GBgfLz856PqaCgIK/qT0OyatUq\nmc1mT3fjvIb09y86Olqffvqp4bYnn3zS2W4BAAAAAAAAAIBaSElJ8XQXAAAAquU9SQkAgEeFhYV5\nugvneVNfUPdCQ0M93QUL/P0DAAAAAAAAAAAAAACNkY+nOwAAAAAAAAAAAAAAAAAAAADPIlAKAAAA\nAAAAAAAAAAAAAADQyBEoBQAAAAAAAAAAAAAAAAAAaOQIlAIAAAAAAAAAAAAAAAAAADRyBEoBAAAA\nAAAAAAAAAAAAAAAaOQKlAAAAAAAAAAAAAAAAAAAAjZyfpzsAAAAAAAAAAAAAAIAkRUVFeboLAAAA\nQKNFoBQAAAAAAAAAAAAA4BUCAgI83QUAAACg0WLJewAAAAAAAAAAAAAAAAAAgEaOQCkAAAAAAAAA\nAAAAAAAAAEAjR6AUAAAAAAAAAAAAAAAAAACgkSNQCgAAAAAAAAAAAAAAAAAA0Mh5LFAaEuFn8XXh\n2XIP9QSAOxXkWv5bD430s7EnAACojYvH13lZZR7qCQB3unh8HdaU8TUAAAAAAAAAAAAc47FAaXCY\nr8XXxQUVHuoJAHcqzre84X3xewEAAHDMxZ+pPLAFNA4Xj69DIwiUAgAAAAAAAAAAwDFeEygtyidQ\nCjQGRReFxwmUAgDgGgRKgcbp4vF1SDiBUgAAAAAAAAAAADjGY4HSoItueGdlFHuoJwDcKTujxOLr\nYG54AwDgEkGhBEqBxuji8XUIM5QCAAAAAAAAAADAQR4LlMa0CbT4On1/gYd6AsCd0vblW3wd0zbQ\nxp4AAKA2oi8aX588UuihngBwJ+vxdRMP9QQAAAAAAAAAAAD1nccCpZf0CrX4OvtEiYryWPYeaMiK\n8iuUc6rUotbx0lAbewMAgNq4+DP15JEixtdAA2c0vu7QI8RDvQEAAAAAAAAAAEB957FAaUi4r2Lb\nW86itD8lx0O9AeAOezdlW3zdskOgAoM99jYEAECDEhLuq+g2ljMTMr4GGjaj8bV/E8bXAAAAAAAA\nAAAAcIxH7zR1vGiW0r2bclSczyxKQENUXFCh/VtyLWqX9GR2UgAAXKn7oAiLrxlfAw0X42sAAAAA\nAAAAAAC4mkcDpV0HhFvMnlJZYdbOdVke7BGAurJ99RlVVpjPf+3fxEfdBoR7sEcAADQ8XfuHKyzK\n7/zXjK+BhovxNQAAAAAAAAAAAFzNo4HSwGAf9ftjlEXtwNZcnf6tyEM9AlAXTqYW6dC2sxa1/qOa\nqgnL3QMA4FI+PlKfkYyvgYaO8TUAAAAAAAAAAADqgsfvNiUOj1JIhO/vBbO05sMMFeSWe65TAFym\nIKdMaz/KkH6fPElhUX66dFik5zoFAEAD1m1guILDGV8DDRXjawAAAAAAAAAAANQVjwdKfXylP06K\nlUy/10qLKvXj+8dVUWa2fSAAr1deatYP7x5XWUnl70WTNOqWWPn42j4OAAA4zsfXpJHjYyxqjK+B\nhoHxNQAAAAAAAAAAAOqSxwOlktSqU5AGXt3MopZ7ulTfLk1TSWGFh3oFwBklhRX67p005WWVWdQH\njW6m2PaBHuoVAACNQ7uuwep9eZRFjfE1UL8xvgYAAAAAAAAAAEBd84pAqST1vSJKbRKCLWpZGSX6\n8rXflHOq1EO9AuCI7BPn/u1mZZRY1Nt1sw63AACAupE0upmaxwVY1LIySvTFa78p52SJjaMAeKPs\nE+f+7TK+BgAAAAAAAAAAQF3ymkCpTNJVt8YqJMJynb6i/Ap99fox/frDGZboBLxcRZlZv35/Rt+8\ndUxF+Zazn4VG+umqW1p6qGcAADQ+JpP0pymtFBxmOb4uzq/QV2+kMb4G6oELx9fFjK8BAAAAAAAA\nAABQx7wnUCqpSZCPbrqvjaKi/S3q5kqzdq/P1meLjuq33fke6h2A6hzdmafPFh3R7g3ZqrxoJd2o\naH/deG9r+TcxeaZzAAA0UsHhvrr5fsbXQH3E+BoAAAAAAAAAAADu5ufpDlwsNNJPN9/fVivfPK60\n/UUW24ryyrV++Qlt+95PcZ1C1Do+RNHtguXja6MxAHWmskI6ebRQ6fsLdPxAgQpyyw33a9c1WFfd\n2pKb3QAAeAjja6B+YHwNAAAAAAAAAAAAT/O6QKkk+Tcx6fpprbThszP6+ftsq+0FOeU6kJKrAym5\nkqSAIB8FBPqqSbCvfHy5qQbUlYqySpUWV6q0uEKlRZU17t9nZJSSRjdzQ88AAEB1GF8D3onxNQAA\nAAAAAAAAcJf1H5/wdBdQD3hloLTKoORmuqRniNZ+kqmTR4tt7ldaVKnSokrlZ5e5sXcAbIlpF6ih\n1zdXbPtAT3cFAABcgPE1UD8xvgYAAAAAAAAAAM76bU++p7uAesCrA6WSFNs+UDfd11pHdxdq48pM\nZR4v9XSXANjQvFUTJV3bTO26Bnu6KwAAwAbG10D9wfgaAAAAAAAAAAAA7uT1gdIq7boFq123tjqT\nUapj+wp17EChjh8sUlmp2dNdAxot/yYmteoYpDYJwWoTH6ymsQGe7hIAALAT42vA+5RVFOlEzm75\nhefKHJgp/7BmSj2ZoMzCMPXp08fT3QMAAAAAAAAAAEADV28CpVWatQxQs5YBShwRKUkqLa60+FNR\nzg1woK74+pkUEOijgEAfNQnykX8TH093CQAAOInxNeCYjRs36u2333aqjUpzuUrLC1VaXqiyikKV\nVRRb7rDa8suWLVsqLi5O8fHx5/9bVQMAAAAAAAAAALjQHyfF1Gr/999/Xzt37qy+zT/+UcOGDXOm\nW/By9S5QerGqcBsAAAAA5zG+Buzz/uxFyshJlclksqibzedC2BfXXSEjI0MZGRnaunWr1bY+ffoo\nLCxM8fHxio+PV1gYs5oCAAAAAAAAANCYxfcJs3vfHTt2aMUPr1a7T1hYmMbf9ZRCQ0Od7Rq8WL0P\nlAIAAAAA4G5Lly7VQw89pE2bNlnUjYKkZrNZJpPJ6r+uVBUyXb3aclrTqhlMO3furFatWjGrKQAA\nAAAAAAAAsGA2mzVv3rwa95sxYwZh0kaAQCkAAAAAALUUHByshQsX6uabb9bhw4er3bcqPHrxf6Xf\nZzS9uO4q9sxq+s9//tPl5wUAAAAAAAAAAPXD559/rn379lW7T4cOHTR27Fg39QiexFqWAAAAAAA4\n6KGHHjKsXxgUrY7JZDr/x+j4i//rSlu3btXq1avVt29fl7cNAAAAAAAAAAC8X3FxsV5++eUa95s9\ne3adTIwB78MMpQAAAAAAOKhv374aPXq0Pv/8c4u6sxdV3D2raVWoNCUlxSXtAQAAAAAAoOHa9OlJ\nT3cBAOAib775pnJycqrdZ+jQoerTp4+begRPI1AKAAAAAIATJk+ebBUolc4FP+viaV1bbVad7+L/\n1kbfvn0JlQIAAAAAAKBaqTvyPN0FAIALnD59Wu+88061+/j4+Oj+++93U4/gDVjyHgAAAAAAJ8TF\nxWn06NGe7kaNs5pW/QEAAAAAAAAAAHjxxRdVVlZW7T7jxo1TmzZt3NQjeAMCpQAAAAAAOGny5MkK\nDQ21qNXF7KSOMplM5/9Uh9lJAQAAAAAAAABo+Hbs2KFvvvmm2n3CwsI0ZcoUN/UI3oIl7wEAAAAA\ncFJcXJwmTJigf//73xb1ulr2vi4QJgUAAAAAAICRkeOjPd0FAICLzZs3r8Z9pk6dajWZBho+k5n1\n7gAAAAAAcFpeXp6Sk5OVn5/v6a7Y5cKwK2FSAAAAAAAAAAAahy+//FJ//etfq92ndevW+vjjj+Xr\n6+umXsFbsOQ9AAAAAAAuEBYWpgkTJljVvfE5zvo0cyoAAAAAAAAAAHCN0tJSvfzyyzXuN3v2bMKk\njRSBUgAAAAAAXGTixImKjY21qJlMJq8MlVZhdlIAAAAAAAAAABqHJUuWKDMzs9p9kpKSNHDgQDf1\nCN6GQCkAAAAAAC4SFhamKVOmeLob1WKpewAAAAAAAAAAGp/Tp09ryZIl1e7j4+Ojhx56yE09gjci\nUAoAAAAAgAslJyd79SylLHUPAAAAAAAAAEDjs3DhQhUXF1e7z4033qg2bdq4qUfwRgRKAQAAAABw\nMaNZSr0hyHlhqJXZSQEAAAAAAAAAaBz27t2rlStXVrtPSEiIpk6d6qYewVsRKAUAAAAAwMWSk5PV\nuXNnT3fDCkvdAwAAAAAAAADQ+MybN6/GfaZMmaLw8HA39AbejEApAAAAAAB14IEHHvB0FwAAAAAA\nAAAAQCO3atUq7dy5s9p9WrdurXHjxrmpR/BmBEoBAAAAAKgDffv2Ve/evT3dDZnNZpa6BwAAAAAA\nAACgESotLdXLL79c437333+/fH193dAjeDsCpQAAAAAA1JHJkycb1i8MeNY1k8nEUvcAAAAAAAAA\nADRC7777rk6cOFHtPpdddpmGDRvmph7B2xEoBQAAAACgjvTt21ejR4+2qlcFPOsaM5MCAAAAAAAA\nANA4ZWdn6/XXX69xv0ceecQNvUF9QaAUAAAAAIA65KlZSs1ms9uCqwAAAAAAAAAAwLvMnz9fxcXF\n1e5z/fXX65JLLnFTj1AfECgFAAAAAKAOxcXFGc5S6k7MTgoAAAAAAAAAQOOxb98+ffbZZ9XuExwc\nrLvvvttNPUJ9QaAUAAAAAIA6ZjRLaV3PHnph+0888USNTyEDAAAAAAAAAICG4emnn65xnzvvvFNR\nUVFu6A3qEwKlAAAAAADUsbi4ON11111W9bpe9r7KihUrNG7cOO3du9ct5wMAAAAAAAAAAJ7x7bff\naufOndXuExsbq4kTJ7qpR6hPCJQCAAAAAOAGEydOVGhoqEWtLmYptRVSTU9P12233aYlS5a4LcgK\nAAAAAAAAAADcp7S0VC+99FKN+82aNUt+fn5u6BHqGwKlAAAAAAC4QVhYmCZMmGBVd3W4s7qQanl5\nuRYsWKDJkycrMzPTpecFAAAAAAAAAACe9c477+jEiRPV7nPZZZdpxIgRbuoR6huTmWlJAAAAAABw\ni7y8PCUnJys/P9+ibjabnZ6ttLZthIaGau7cuRo0aJBT5wUAAAAAAAAAAJ6XnZ2t5ORkFRcXV7vf\nf/7zH11yySVu6hXqG2YoBQAAAADATcLCwvTAAw+4vF1HAqn5+fmaOXOmnn76aZWUlLi8TwAAAAAA\nAAAAwH1efvnlGsOkY8aMIUyKahEoBQAAAADAjZKTkxUbG2tRM5lMctUCIpdddlmt9v/44481fvx4\n7d271yXnBwAAAAAAAAAA7rVv3z59/vnn1e4THByse+65x009Qn1FoBQAAAAAADebMmWKVc3RJe8v\nnJ00JSVFr732mu677z75+/vb3cax/5+9Ow2vsjzXBnwnhDCFQYwMilaBUqUorUVQREVLHVoVEVRA\ncGRyqLUqW7fFUm0Pa63dUm0RQRCEWrdFwd3S4oy12oIooFatIoJiAWUIECCQleT78W2yRTETa61M\n53kc77HerNzP817qL5Mrz/roo7jkkkti2rRpUVxcXKUcAAAAAABA9fjFL35R7syoUaOiRYsWaUhD\nbaZQCgAAAGl21llnxVe/+tWk7PX5ImpGRkYMGzYsZs6cGYceemiF90kkEjFx4sQYMWJErFmzJinZ\nAAAAAACA1Jo/f368/vrrZc60a9cuBg8enKZE1GYKpQAAAFANrr/++n3eo6SkpPR+8eLFe3yvc+fO\n8fvf/z6GDh1aqT1ff/31GDx4cLkfjQMAAAAAAFSvXbt2xYQJE8qdu+GGGyIrKysNiajtFEoBAACg\nGvTo0SOOPvrofdrjsx91vzcNGzaM6667LiZPnhz7779/hffdtm1b/OQnP4mxY8fG1q1b9ykjfHVw\nRgAAIABJREFUAAAAAACQGtOmTYv169eXOfPNb34z+vbtm6ZE1HYKpQAAAFBNRo0atdf3P3vyaDIc\nffTRMXv27Dj55JMrte7555+PQYMGxaJFi5KaBwAAAAAA2Ddr166Nhx56qNy5G2+8MQ1pqCsUSgEA\nAKCa9OjRI84888wvvL/75NG9KSkpKfOj7r9M8+bN45e//GXceuut0bRp0wpn3LBhQ1x55ZVx9913\nV3gNAAAAAACQWhMmTIhdu3aVOTNw4MDo3LlzmhJRF2SUJPvYEwAAAKDC/v3vf8fZZ5/9hfdLSkrK\nLJZGVLxM+nmffPJJ/OhHP4olS5ZUat2hhx4ad9xxhx8+AQAAAABANXrzzTfjkksuKXOmadOmMW/e\nvGjevHmaUlEXOKEUAAAAqtGBBx6411NK96YqJ5PuTZs2bWLy5MlxzTXXRFZWVoXXrVy5MoYNGxaz\nZs0Kf58KAAAAAADpV1JSErfffnu5c1dccYUyKZWmUAoAAADVbNSoUZGTk7PHe58/nbQiJ5ZWRkZG\nRlx00UUxa9asOPTQQyu8LpFIxIQJE2LUqFHxySefJC0PAAAAAABQvieeeCLefffdMmcOOuigOP/8\n89OUiLpEoRQAAACq2YEHHhhDhgz5wvtfdgrovpxO+nmdO3eO3//+9zF48OBKrVuyZEmcf/75MX/+\n/KRlAQAAAAAAvty2bdviN7/5TblzP/rRj6JBgwZpSERdo1AKAAAANcDQoUPLPKV0930yy6S7NWzY\nMG644YaYOHFi7L///hVel5+fH+PGjYuxY8fG1q1bk54LAAAAAAD4P5MnT468vLwyZ0444YTo2bNn\nmhJR1yiUAgAAQA3QvHnzSp1Smgo9e/aM2bNnxwknnFCpdc8//3wMGjQoXn755RQlAwAAAACA+m31\n6tXx+9//vsyZrKysuP7669OUiLoooySdv5kCAAAAynTmmWfG2rVr9/q9VJxO+mX+53/+J+66667Y\nvn17pdade+65cd1110Xjxo1TlAwAAAAAAOqfK664Il555ZUyZ4YPHx4/+MEP0pSIukihFAAAAGqY\nHj16fOG9dJZJd1uzZk3ceOON8dZbb1Vq3UEHHRS33XZbdO/ePUXJAAAAAACg/nj++edj7NixZc60\natUqnnjiiWjWrFmaUlEXKZQCAABADbW7WFodZdLdioqK4sEHH4wpU6ZEUVFRhddlZmbGRRddFGPG\njImsrKwUJgQAAAAAgLpr165dMWDAgFi3bl2Zc7fcckv0798/TamoqzKrOwAAAACwd9VZJN2tQYMG\nMWLEiJgxY0YcdNBBFV5XXFwc06dPj2HDhsUHH3yQwoQAAAAAAFB3TZ8+vdwyaefOnePss89OUyLq\nMieUAgAAABVSUFAQEyZMiNmzZ1dqXcOGDePKK6+MCy+8MDIz/W0rAAAAAABUxNq1a2PAgAFRWFhY\n5tyMGTPi61//eppSUZf5LQ4AAABQIY0bN46bbropJk6cGPvvv3+F1xUWFsavf/3rGDFiRKxZsyaF\nCQEAAAAAoO74r//6r3LLpGeccYYyKUmjUAoAAABUSs+ePWP27Nlx2mmnVWrd66+/HhdccEE88cQT\nKUoGAAAAAAB1w9KlS+O5554rc6Zp06Zx/fXXpykR9YGPvAcAAACq7Lnnnovbbrst8vPzK7Wud+/e\nMX78+EqddAoAAAAAAPVBIpGICy64IFatWlXm3LXXXhvDhg1LUyrqAyeUAgAAAFV2yimnxOzZs+O4\n446r1LqXX345Bg0aFPPnz09RMgAAAAAAqJ0efvjhcsukX/nKV2LIkCFpSkR94YRSAAAAICkee+yx\nuPvuu6OgoKBS60488cS45ZZbYr/99ktRMgAAAAAAqB3Wr18f/fv3j507d5Y5N3Xq1OjevXuaUlFf\nOKEUAAAASIqBAwfGI488EkcddVSl1v31r3+NgQMHxgsvvJCiZAAAAAAAUDv86le/KrdM+u1vf1uZ\nlJRwQikAAACQVMXFxfHQQw/FpEmTIpFIVGrtd77znbjpppuiZcuWKUoHAAAAAAA107Jly+Lyyy8v\nc6ZRo0bxxBNPRG5ubppSUZ84oRQAAABIqszMzLjkkkti1qxZ0blz50qtffrpp2PgwIHx0ksvpSgd\nAAAAAADUPIlEIm677bZy5y677DJlUlLGCaUAAABAyiQSibjvvvvioYceisr+COK73/1ujB07Npo3\nb56idAAAAAAAUDPMmDEj7r333jJnDjrooHjsscciKysrTamobxRKAQAAgJR78803Y9y4cbF69epK\nrWvdunX89Kc/jV69eqUoGQAAAAAAVK/169dH//79Y+fOnWXOTZo0KXr06JGmVNRHPvIeAAAASLlu\n3brFf//3f8eQIUMqtW7jxo1x1VVXxW233Rbbtm1LUToAAAAAAKg+d911V7ll0j59+iiTknJOKAUA\nAADSaunSpXHLLbfEmjVrKrUuNzc3br31VqeVAgAAAABQZyxevDjGjBlT5kzDhg1jzpw50a5duzSl\nor5SKAUAAADSrqCgICZMmBCzZ8+u9Nozzzwzrr/++mjevHkKkgEAAAAAQHokEok499xz49///neZ\ncyNHjozRo0enKRX1mY+8BwAAANKucePGcdNNN8WkSZMiNze3Umv/9Kc/xcCBA+OFF15IUToAAAAA\nAEi9Bx98sNwy6YEHHhiXXnppmhJR3zmhFAAAAKhW27Zti7vvvjvmzp1b6bWnnXZa/Md//Ee0bNky\nBckAAAAAACA1Pv744xg0aFAUFhaWOTdp0qTo0aNHmlJR3zmhFAAAAKhWzZo1i3HjxsVvf/vbaN26\ndaXWPvnkkzFw4MB45plnUpQOAAAAAACS77bbbiu3TNqvXz9lUtLKCaUAAABAjbF169a46667Yt68\neZVee+KJJ8Ytt9wS++23XwqSAQAAAABAcjz77LNx4403ljnTpEmTmDNnTuTm5qYpFSiUAgAAADXQ\nSy+9FOPHj4+8vLxKrWvRokWMHTs2zjjjjBQlAwAAAACAqtu+fXsMGDAgNmzYUObc9ddfH0OGDElT\nKvj/fOQ9AAAAUOMcf/zx8dhjj8Xpp59eqXVbtmyJW265Ja655pr49NNPU5QOAAAAAACqZuLEieWW\nSTt16hTnn39+mhLB/3FCKQAAAFCjvfTSS3HrrbfGxo0bK7UuJycnrrvuujj77LNTlAwAAAAAACru\nnXfeiWHDhpU7N2PGjPj617+ehkSwJ4VSAAAAoMbbunVr3H333fE///M/lV7bo0ePGD9+fLRv3z4F\nyQAAAAAAoHxFRUUxZMiQWLFiRZlz5557btx8881pSgV7UigFAAAAao2FCxfGbbfdFuvWravUusaN\nG8eYMWNi6NChkZmZmaJ0AAAAAACwd7NmzYoJEyaUOdOyZcuYO3duNG/ePE2pYE8KpQAAAECtsmPH\njpgwYUI89thjlV7bpUuXuO2226Jz584pSAYAAAAAAF/0ySefxIABA2Lnzp1lzt16663xve99L02p\n4IsUSgEAAIBaafHixXHrrbfGmjVrKrWuQYMGMXz48Bg1alRkZ2enKB0AAAAAAPx/V111VSxcuLDM\nmSOPPDIefPDBNCWCvfMZbwAAAECt1KNHj/jDH/4QgwcPjoyMjAqvKyoqiunTp8d5550XS5YsSWFC\nAAAAAADqu2eeeabcMmmDBg3i1ltvTVMi+HJOKAUAAABqvTfffDPGjRsXq1evrvTac845J6699trI\nyclJQTIAAAAAAOqr7du3xznnnBMbN24sc27kyJExevToNKWCL+eEUgAAAKDW69atW/z3f/93XHTR\nRZGZWbkfd8ydOzcGDRoUzz33XIrSAQAAAABQH919993llkkPPvjguPzyy9OUCMrmhFIAAACgTvnX\nv/4V48ePj+XLl1d6bZ8+fWLcuHGRm5ubgmQAAAAAANQXS5cujREjRpQ7N3369OjWrVsaEkH5nFAK\nAAAA1Clf+9rX4ne/+11cffXVkZ2dXam1f/vb32LgwIHx6KOPhr/BBQAAAACgKgoKCmLcuHHlzp19\n9tnKpNQoTigFAAAA6qzVq1fHT37yk1i6dGml1x5xxBExfvz46Ny5cwqSAQAAAABQV02YMCFmzZpV\n5kzLli3jiSeeiJycnDSlgvIplAIAAAB13ty5c2PChAmRn59fqXWZmZkxdOjQGD16dDRp0iRF6QAA\nAAAAqCv+9a9/xfDhw6O4uLjMuZ/97Gdx+umnpykVVIxCKQAAAFAvbNy4MX7xi1/Es88+W+m1bdq0\niZtvvjn69OmTgmQAAAAAANQFiUQihgwZEh988EGZc9/85jdjypQpaUoFFadQCgAAANQrf/vb3+Jn\nP/tZrF+/vtJrTz755LjxxhsjNzc3BckAAAAAAKjNJk+eHJMnTy5zpkWLFjFr1qw48MAD05QKKk6h\nFAAAAKh3tm3bFvfee2/Mnj270mubNm0aV155ZZx//vmRmZmZgnQAAAAAANQ2K1asiCFDhkRRUVGZ\ncz/96U/jjDPOSFMqqByFUgAAAKDeeuONN+LHP/5xfPTRR5Ve26VLlxg/fnx87WtfS0EyAAAAAABq\ni5KSkrjwwgvj3XffLXOud+/ecc8996QpFVSeQikAAABQrxUWFsaMGTNi6tSpUVhYWKm1mZmZMXjw\n4LjiiiuiSZMmKUoIAAAAAEBN9tBDD5VbFG3WrFnMmTMnWrdunaZUUHkKpQAAAAAR8eGHH8btt98e\nixcvrvTaNm3axHXXXRf9+vVLQTIAAAAAAGqqlStXxuDBgyORSJQ5N27cuDjnnHPSlAqqRqEUAAAA\n4DP+8pe/xK9+9avIy8ur9NoePXrETTfdFIceemgKkgEAAAAAUJMUFxfH0KFDY/ny5WXO9ejRIyZN\nmpSmVFB1CqUAAAAAn7Nly5a45557Yu7cuZVem5WVFcOGDYsRI0ZE48aNU5AOAAAAAICa4IEHHii3\nKNq4ceOYM2dOHHDAAWlKBVWnUAoAAADwJd5444249dZbY+XKlZVe27Zt27juuuvi29/+dgqSAQAA\nAABQnd57770YNmxYFBUVlTl34403xnnnnZemVLBvFEoBAAAAypBIJGLWrFkxZcqU2LlzZ6XX9+jR\nI8aNGxcdOnRIQToAAAAAANItkUjE4MGDyz2MoHv37jF16tQ0pYJ9p1AKAAAAUAGrV6+OO+64I/7x\nj39Uem1WVlYMHz48RowYEY0aNUpBOgAAAAAA0mXixIkxbdq0Mmeys7Pjsccei/bt26cpFew7hVIA\nAACASnj66afjrrvuig0bNlR6bbt27eKGG26Ivn37piAZAAAAAACp9t5778XQoUOjvNrdD3/4w7jw\nwgvTlAqSQ6EUAAAAoJLy8/Nj0qRJ8eijj0ZxcXGl1x9zzDHxn//5n3HIIYekIB0AAAAAAKmwc+fO\nGDJkSHz44YdlznXt2jVmzJgRGRkZaUoGyaFQCgAAAFBF7733Xvz85z+P119/vdJrs7KyYujQoTFy\n5Mho0qRJCtIBAAAAAJBMd9xxR8yePbvMmezs7Hj00UejQ4cOaUoFyaNQCgAAALCP5s2bF7/+9a9j\n48aNlV6bm5sbP/jBD+KMM85IQTIAAAAAAJJh4cKFcdVVV5U7N3bs2LjgggvSkAiST6EUAAAAIAny\n8/Nj0qRJ8eijj0ZxcXGl13fr1i1uueWW6NSpUwrSAQAAAABQVXl5eTFo0KDIy8src+7oo4+OyZMn\npykVJJ9CKQAAAEASvffee/Hzn/88Xn/99UqvzczMjHPPPTeuvvrqyMnJSUE6AAAAAAAq68orr4xF\nixaVOdOsWbN47LHHIjc3N02pIPkyqzsAAAAAQF3y1a9+NaZNmxY/+clPYr/99qvU2uLi4pg9e3b0\n798/Hn/88fB3wAAAAAAA1evxxx8vt0waEfGf//mfyqTUek4oBQAAAEiR/Pz8+O1vfxt/+MMfqrS+\nS5cucdNNN8VRRx2V5GQAAAAAAJTn448/jvPOOy927dpV5ly/fv3ijjvuSFMqSB2FUgAAAIAUe//9\n9+MXv/hFvPbaa1Vaf8opp8Q111wTHTp0SHIyAAAAAAC+zMUXXxz//Oc/y5zZf//9Y/bs2dG8efM0\npYLUUSgFAAAASJPnn38+JkyYEB9//HGl12ZlZcWgQYNi1KhR0aJFixSkAwAAAABgt9/85jcxffr0\ncufuv//++Na3vpWGRJB6CqUAAAAAabRr1654+OGHY9q0abF9+/ZKr8/JyYnLL788Bg8eHA0bNkxB\nQgAAAACA+m3x4sUxZsyYcucGDRoUN910UxoSQXoolAIAAABUg40bN8a9994bf/zjH6u0vn379nH1\n1VfHqaeeGhkZGUlOBwAAAABQP23YsCHOP//82Lx5c5lzBx10UDz66KPRqFGjNCWD1FMoBQAAAKhG\n7777btx+++3x5ptvVml9ly5d4uabb45u3bolORkAAAAAQP1SXFwcI0eOjGXLlpU5l5GRETNnzozD\nDz88TckgPRRKAQAAAGqAJ598Mu65555Yt25dldb37ds3rr322ujQoUOSkwEAAAAA1A+TJk2KBx54\noNy5kSNHxujRo9OQCNJLoRQAAACghti5c2fMnDkzpk+fHgUFBVXa44ILLoiRI0dGq1atkpwOAAAA\nAKDuWrx4cYwZM6bcue7du8eUKVMiMzMzDakgvRRKAQAAAGqYTZs2xX333Rdz586N4uLiSq/PycmJ\nSy+9NIYOHRoNGzZMQUIAAAAAgLojLy8vBg4cGJs3by5zrmXLlvHoo4/G/vvvn6ZkkF4KpQAAAAA1\n1KpVq+Luu++Ov/3tb1Va365du7j66qvjtNNOi4yMjCSnAwAAAACo/UpKSuKKK66IxYsXlzs7adKk\n6NGjRxpSQfVQKAUAAACo4V599dW488474/3336/S+q997Wtx1VVXRe/evZOcDAAAAACgdpsyZUrc\nf//95c5dfPHF8f3vfz8NiaD6KJQCAAAA1AIlJSXx5z//OSZOnBjr1q2r0h7dunWL66+/Po488sgk\npwMAAAAAqH2WLl0aI0eOjPIqdF27do1p06ZFVlZWmpJB9VAoBQAAAKhFdu7cGQ8//HBMnz49tm3b\nVqU9evfuHddcc0107tw5yekAAAAAAGqHvLy8OP/882Pjxo1lzuXk5MSjjz4abdq0SVMyqD4KpQAA\nAAC1UF5eXkyaNCnmzJkTRUVFVdqjX79+cdVVV8XBBx+c5HQAAAAAADVXcXFxjBo1KpYuXVru7D33\n3BO9e/dOQyqofgqlAAAAALXYqlWr4p577okXXnihSuszMzPjrLPOitGjR/sLewAAAACgXviv//qv\nePjhh8udu/DCC+OHP/xhGhJBzaBQCgAAAFAHLF26NO6888549913q7S+YcOGMWjQoLj88sujVatW\nSU4HAAAAAFAzPPXUU3HzzTeXO9e1a9eYNm1aZGVlpSEV1AwKpQAAAAB1RElJSTz55JPxm9/8Jtau\nXVulPZo0aRIXXnhhDBs2LHJycpKcEAAAAACg+ixfvjyGDx8ehYWFZc41bdo0Zs+e7VOdqHcUSgEA\nAADqmMLCwnjsscdi6tSpsWnTpirt0aJFi7j44ovjggsuiMaNGyc5IQAAAABAem3evDmGDh0a69at\nK3f2rrvuir59+6YhFdQsCqUAAAAAdVRBQUH87ne/i5kzZ0Z+fn6V9sjNzY0RI0bEOeec46OdAAAA\nAIBaqbi4OEaNGhVLly4td3bYsGFx7bXXpiEV1DwKpQAAAAB13NatW2P69OnxyCOPxM6dO6u0R7t2\n7eKyyy6Ls88+W7EUAAAAAKhVJkyYELNmzSp37hvf+EZMnjw5MjMz05AKah6FUgAAAIB6YuPGjTF5\n8uSYO3duJBKJKu3Rrl27uOSSS5xYCgAAAADUCgsWLIgbbrih3Lm2bdvGww8/HC1btkxDKqiZFEoB\nAAAA6pm1a9fGfffdF3/+85+jqj8aatu2bVxyySUxYMAAxVIAAAAAoEZavnx5XHzxxeV+clOjRo1i\nxowZ0blz5zQlg5pJoRQAAACgnlq5cmX85je/iQULFlR5jwMOOKC0WJqdnZ3EdAAAAAAAVbd58+YY\nOnRorFu3rtzZu+66K/r27ZuGVFCzKZQCAAAA1HPvvPNO3HPPPbFo0aIq75GbmxuXXHJJnHvuuYql\nAAAAAEC1SiQSMXLkyHjjjTfKnR02bFhce+21aUgFNZ9CKQAAAAAREbF06dL41a9+FW+//XaV98jN\nzY2LLrooBg4cGI0aNUpiOgAAAACAihk3blzMnz+/3LlvfOMbMXny5MjMzExDKqj5FEoBAAAA2MNf\n//rXmDhxYixfvrzKe7Ru3TouuuiiOO+88xRLAQAAAIC0eeCBB2LSpEnlzrVt2zYefvjhaNmyZRpS\nQe2gUAoAAADAF5SUlMSTTz4ZkyZNitWrV1d5n/3226+0WNq4ceMkJgQAAAAA2NOzzz4bN954Y7lz\nDRs2jJkzZ0bnzp3TkApqD4VSAAAAAL5UUVFRzJs3L6ZNm7ZPxdJWrVrF8OHD44ILLlAsBQAAAACS\n7vXXX4/Ro0dHYWFhubO33357nHrqqWlIBbWLQikAAAAA5SouLo6//OUvMW3atFi1alWV92nZsmWc\nd955MXTo0GjRokUSEwIAAAAA9dW///3vuPDCC2Pr1q3lzl5yySVx9dVXpyEV1D4KpQAAAABUWHFx\ncTz99NPxwAMPxAcffFDlfRo1ahT9+/ePiy++ONq2bZvEhAAAAABAfZKfnx/Dhw+Pjz76qNzZU045\nJX7xi19ERkZGGpJB7aNQCgAAAECllZSUxLPPPhsPPPBALF++vMr7ZGZmxne+8524/PLLo2PHjklM\nCAAAAADUdYlEIq688sp47bXXyp094ogjYurUqZGdnZ2GZFA7KZQCAAAAsE8WLFgQDzzwQLzzzjv7\ntM+xxx4bF198cRxzzDFJSgYAAAAA1GXjxo2L+fPnlzvXvn37mDlzZrRq1SoNqaD2UigFAAAAICle\nfPHFmDJlSrz11lv7tM8RRxwRF198cZxyyimRmZmZpHQAAAAAQF1y3333xdSpU8uda9asWcycOTMO\nOeSQNKSC2k2hFAAAAICkevnll2PKlCnxxhtv7NM+HTp0iOHDh8dZZ53lY6gAAAAAgFKzZ8+OO+64\no9y5rKys+O1vfxvf+ta30pAKaj+FUgAAAABSYtGiRTFlypRYsmTJPu3TunXrGDx4cJx//vmRk5OT\npHQAAAAAQG00f/78GDduXIVmf/azn8Xpp5+e4kRQdyiUAgAAAJBSS5cujRkzZsSLL764T/s0adIk\nzj333Bg2bFgccMABSUoHAAAAANQW//jHP+Kaa66J4uLicmcvu+yyuPLKK9OQCuoOhVIAAAAA0mLl\nypUxffr0mD9/fiQSiSrvk5WVFf369YvBgwdHt27dkpgQAAAAAKipli1bFldccUXs2rWr3NlTTjkl\n7rzzzjSkgrpFoRQAAACAtPr000/jd7/7XTz++OOxffv2fdqrW7duMXjw4OjXr19kZWUlKSEAAAAA\nUJO8//77cemll1bo54lHHnlk3H///ZGdnZ2GZFC3KJQCAAAAUC3y8/PjD3/4Q/z+97+PjRs37tNe\nubm5cd5558XAgQOjVatWSUoIAAAAAFS31atXx6WXXhqbNm0qd/aQQw6JGTNmRPPmzdOQDOoehVIA\nAAAAqlVhYWH88Y9/jIceeihWr169T3s1bNgwTj/99Ljwwgujc+fOSUoIAAAAAFSHjRs3xvDhw2Pd\nunXlzrZt2zamT58eBxxwQBqSQd2kUAoAAABAjVBSUhLPPvtsPPTQQ/HWW2/t837f/OY3Y+jQoXHS\nSSdFZmZmEhICAAAAAOmydevWuPzyy2PFihXlzrZs2TJmzJgRHTp0SEMyqLsUSgEAAACocRYvXhwz\nZsyIv//97/u8V7t27eKCCy6IAQMGRE5OThLSAQAAAACplJ+fH6NGjYp333233NmmTZvGAw88EF26\ndElDMqjbFEoBAAAAqLFWrFgR06ZNi6effjqKior2aa/GjRvH9773vbjwwgvjkEMOSVJCAAAAACCZ\nKlMmzc7Ojvvuuy+6d++ehmRQ9ymUAgAAAFDjrVu3LmbOnBlz586NgoKCfd6vR48ece6558Ypp5wS\nWVlZSUgIAAAAAOyrLVu2xJgxYypUJs3MzIx77rknjj322DQkg/pBoRQAAACAWmPr1q0xZ86cePTR\nR2Pt2rX7vF+rVq2if//+MWjQoGjfvn0SEgIAAAAAVbFly5YYMWJErFixokLzP/vZz+L0009PcSqo\nXxRKAQAAAKh1iouL44UXXohHHnkkXn311aTs2atXrxg4cGCcdNJJ0aBBg6TsCQAAAACUr7Jl0ptu\nuikGDRqU4lRQ/yiUAgAAAFCrrVixIh5++OH4y1/+Ejt37tzn/XJzc6N///4xcODAaNOmTRISAgAA\nAABfJi8vL0aNGlXhMunIkSNj9OjRKU4F9ZNCKQAAAAB1wtatW+Oxxx6L2bNnx9q1a/d5v4yMjOjd\nu3cMHDgwjj/+eKeWAgAAAECS5eXlxeWXXx6rVq2q0PywYcPi2muvTXEqqL8USgEAAACoU4qKimLB\nggXxyCOPxJIlS5KyZ5s2bWLAgAExYMCAyM3NTcqeAAAAAFCfKZNCzaNQCgAAAECdtWLFipg1a1bM\nnz8/du3atc/7ZWZmxgknnBADBw6M4447LjIyMpKQEgAAAADqlzVr1sQVV1wRq1evrtD8iBEjYsyY\nMSlOBSiUAgAAAFDnbd68OR5//PGYPXt2rFu3Lil7tm3bNr73ve9F//7946CDDkrKngAAAABQ173/\n/vsxevToyMvLq9D8D37wgxg+fHiKUwERCqUAAAAA1CNFRUXx4osvxpw5c+Lll1+OZP1o7Kijjooz\nzzwzTjvttGjWrFlS9gQAAACAuubVV1+NH/7wh7F9+/YKzSuTQnoplAIAAABQL33yySd6iAypAAAW\nLElEQVTx+OOPxxNPPBGffvppUvbMzs6Ovn37xllnnRW9evWKzMzMpOwLAAAAALXdggUL4qabbopE\nIlGheWVSSD+FUgAAAADqtaKiovjb3/4Wjz/+eFJPLc3NzY3vfve70b9///jKV76SlD0BAAAAoDZ6\n4okn4qc//WmF58eOHRsXXHBBChMBe6NQCgAAAAD/KxWnlkZEdO3aNc4666w47bTTokWLFknbFwAA\nAABquokTJ8a0adMqPK9MCtVHoRQAAAAAPmf3qaVz5syJl156KWmnlmZlZcWJJ54YZ511VvTu3Tsa\nNGiQlH0BAAAAoKYpLi6OH//4xzF//vwKzWdkZMRtt90WZ5xxRoqTAV9GoRQAAAAAypCqU0tbtWoV\np5xySpx66qlx9NFHR2ZmZtL2BgAAAIDqlJ+fHzfccEMsXry4QvPZ2dnxy1/+Mo4//vgUJwPKolAK\nAAAAABWQqlNLIyJat24d/fr1i1NPPTW6d+8eGRkZSdsbAAAAANJp5cqVce2118bq1asrNJ+TkxMT\nJ06Mrl27pjgZUB6FUgAAAACopPXr18e8efPiT3/6U3zwwQdJ3fuAAw4oLZceeeSRSd0bAAAAAFLp\n73//e4wdOzYKCgoqNN+mTZuYOHFiHHrooSlOBlSEQikAAAAA7IO333475s2bF/Pnz4+8vLyk7t2u\nXbv4zne+E6eeemocccQRSd0bAAAAAJLpwQcfjIkTJ1b4k32+8pWvxP333x+5ubkpTgZUlEIpAAAA\nACRBIpGIl19+OebNmxd//etfo7CwMKn7d+jQofTk0i5duiR1bwAAAACoql27dsWPfvSjeP755yu8\n5sgjj4x77703cnJyUpgMqCyFUgAAAABIsvz8/HjyySfjT3/6U7zxxhtJ3/8rX/lKfOc734nu3bvH\ncccdl/T9AQAAAKAi1q9fH9///vfjvffeq/Ca3r17x1133RXZ2dkpTAZUhUIpAAAAAKTQxx9/HH/8\n4x9j3rx5sWbNmqTvn5OTE3369ImTTz45jj/++GjcuHHSnwEAAAAAn/f222/H97///cjLy6vwmrPP\nPjvGjRsXmZmZKUwGVJVCKQAAAACkQUlJSSxZsiTmzZsXzzzzTGzbti3pz2jUqFH06tUrTj755Djx\nxBOjZcuWSX8GAAAAAPzud7+Le++9NxKJRIXmMzMz4/vf/34MHz48xcmAfaFQCgAAAABptmvXrnjp\npZfiqaeeihdffDEKCgqS/ozMzMw4+uijo2/fvnHyySdH27Ztk/4MAAAAAOqXLVu2xM033xz/+Mc/\nKrwmJycnfvnLX8YxxxyTwmRAMiiUAgAAAEA12rlzZ7z44ovx1FNPxUsvvRQ7d+5MyXOOOOKI6Nu3\nb/Tt2zc6deqUkmcAAAAAUHe98cYbMXbs2Fi/fn2F13Ts2DF+/etfR/v27VOYDEgWhVIAAAAAqCF2\n7NgRL7zwQjz11FPx97//PQoLC1PynA4dOsRJJ50Uffv2je7du0dmZmZKngMAAABA7VdcXBxTp06N\nKVOmRHFxcYXX9enTJ+64445o3LhxCtMByaRQCgAAAAA1UH5+fixYsCCefvrpWLhwYSQSiZQ8p1Wr\nVnHCCSdE375947jjjovs7OyUPAcAAACA2mfDhg1x4403xtKlSyu1bsyYMTFixIgUpQJSRaEUAAAA\nAGq4/Pz8ePbZZ+Opp56KhQsXpuw52dnZ0bNnzzj22GOjZ8+e0bFjx5Q9CwAAAICa7eWXX44f//jH\nkZeXV+E1zZo1i9tvvz2OP/74FCYDUkWhFAAAAABqkc2bN8czzzwTTz/9dCxevDilz2rdunX07Nkz\n+vTpEz179ozWrVun9HkAAAAAVL9NmzbFXXfdFU8++WSl1h1++OFx5513xoEHHpiiZECqKZQCAAAA\nQC31xhtvxIIFC+L555+PDz/8MOXPO+yww6JXr17Rq1ev+Na3vhVNmzZN+TMBAAAASI+SkpKYO3du\n3HPPPbF169YKr8vIyIiLL744xowZE1lZWSlMCKSaQikAAAAA1AEffPBBLFiwIBYsWBD//Oc/U/68\nBg0aRLdu3aJnz57Rq1ev6Natm18YAAAAANRSK1eujPHjx1f650q5ublxxx13xDe+8Y0UJQPSSaEU\nAAAAAOqYTz/9tLRc+uqrr0YikUj5M5s2bRpHH3109OrVK3r27BmdOnVK+TMBAAAA2De7du2KqVOn\nxowZMyr9M6Q+ffrEbbfdFi1atEhROiDdFEoBAAAAoA7Lz8+PV155JV566aX4+9//HuvWrUvLc3Nz\nc6Nnz57Rs2fPOPbYYyM3NzctzwUAAACgYl577bUYP358rFmzplLrGjVqFNddd10MHDgwRcmA6qJQ\nCgAAAAD1yIoVK+Lll1+Ol19+OZYsWRKFhYVpeW6HDh3iqKOOiu7du0f37t2jY8eOkZmZmZZnAwAA\nAPB/Vq1aFffee28sWLCg0ms7duwYd955Zxx66KEpSAZUN4VSAAAAAKinCgoKSk8vfeWVV2LVqlVp\ne3aTJk2ie/fupSXTI488Mpo2bZq25wMAAADUNxs2bIj7778/Hn/88Sqtv/TSS+Oqq65KciqgJlEo\nBQAAAAAiImLdunXxj3/8IxYtWhSLFi2KTZs2pe3ZGRkZ0blz59ITTI866qg46KCD0vZ8AAAAgLpq\n27ZtMWPGjHj44YejoKCg0uu7desW48ePj8MOOywF6YCaRKEUAAAAAPiCkpKSWL58eSxcuDAWLVoU\nr732WpV+4bAvcnNz46ijjio9xfSII46IrKystGYAAAAAqK0SiUT84Q9/iKlTp0ZeXl6l1+fk5MTV\nV18dAwcOjIyMjBQkBGoahVIAAAAAoFyJRCJef/31WLhwYSxcuDDeeuutKC4uTmuGhg0bxle/+tU4\n4ogjSq9OnTopmQIAAAB8RklJSTz55JNx3333xccff1ylPfr16xf/8R//Ea1bt05yOqAmUygFAAAA\nACpt27Zt8corr8SiRYti0aJFsXLlymrJkZ2dvUfJtGvXrtGxY8do0KBBteQBAAAAqC6JRCL+/Oc/\nx8yZM+ODDz6o0h5t2rSJm2++Ofr06ZPkdEBtoFAKAAAAAOyzTz/9tPT00kWLFsWGDRuqLUt2dnZ0\n6dJlj5LpYYcdpmQKAAAA1En5+fkxe/bseOSRR2L9+vVV2iMzMzOGDh0ao0ePjiZNmiQ5IVBbKJQC\nAAAAAEm3atWqWLZsWSxdujSWLVsWq1atqtY8jRo1Ki2Zdu3aNQ4//PDo2LFjZGZmVmsuAAAAgKr6\n9NNPY9asWTFnzpzYvn17lfc56aST4uqrr47DDjssiemA2kihFAAAAABIuc2bN8eSJUtKS6Zvv/12\nJBKJas3UuHHj6NKlS2nBtGvXrnHooYcqmQIAAAA12ooVK+LBBx+Mp59+ep9+vtKtW7e44YYbolu3\nbklMB9RmCqUAAAAAQNrt2rUr3nrrrVi6dGksXbo0Xn/99diyZUt1x4pGjRrFYYcdFh07doyOHTtG\np06dolOnTtG+ffvIyMio7ngAAABAPVVQUBDPPPNMzJ07N5YuXbpPe3Xs2DGuvvrqOPHEE5OUDqgr\nFEoBAAAAgBphxYoVpSeYLlu2LFavXl3dkUo1btz4CyXTjh07Rrt27ao7GgAAAFCHLV++PGbPnh3z\n58+P/Pz8fdqrbdu2MXr06DjzzDN9QguwVwqlAAAAAECNtGnTpnjttddi2bJlsWzZsvjXv/61Tx/j\nlgrNmjWLww47bI+SaadOneKAAw6o7mgAAABALbVt27b4y1/+EnPnzo133nlnn/dr3rx5XHbZZXH+\n+edHo0aNkpAQqKsUSgEAAACAWmHXrl3x7rvvxttvv116rVixIoqKiqo72hfk5OR8oWTasWPH2H//\n/as7GgAAAFBDLV26NObOnRvPPPNMFBQU7PN+BxxwQAwZMiQGDRoUTZs2TUJCoK5TKAUAAAAAaq3d\nJdN33nlnj5JpTTvJdLecnJw4+OCD4+CDD45DDjkkOnToUPp169atqzseAAAAkGZvvvlmPPvss/Hc\nc8/Fxx9/nJQ9DzvssBg+fHh897vfjaysrKTsCdQPCqUAAAAAQJ1SWFhYepLp7qLp+++/X2NLprs1\nbdq0tFy6u2h6yCGHxMEHHxy5ubnVHQ8AAABIgpKSkli6dGk8++yz8fzzz8e6deuStvc3vvGNuOii\ni+LEE09M2p5A/aJQCgAAAADUeYWFhfHee++VnmL6zjvvxPLly2t8yXS3xo0b73Ga6WeLp23bto2M\njIzqjggAAAB8iaKionj11Vfjueeei+effz42bNiQtL0zMjLipJNOissuuyy6du2atH2B+kmhFAAA\nAAColwoLC2P58uXx1ltv1cqS6W4NGzaMtm3bRrt27aJ9+/bRvn37L9z7eDsAAABIr0QiEQsXLozn\nnnsuXnjhhcjLy0vq/rm5udG/f/8YMGBAtGvXLql7A/WXQikAAAAAwP9KJBLx4YcfxooVK/a4Pvzw\nw1pXNP2s3NzcaNeuXWnR9POvzZs3r+6IAAAAUKsVFxfHv/71r3jllVdi8eLFsWTJktixY0dSn5GZ\nmRm9e/eOAQMGRJ8+faJBgwZJ3R9AoRQAAAAAoByJRCI++uijeP/99+ODDz4ofV21alWtLpru1qxZ\nsz1Kpp8vnB5wwAGRkZFR3TEBAACgxigpKYnly5fH4sWL45VXXonXXnst8vPzU/Ksdu3axTnnnBPn\nnHNO5ObmpuQZABEKpQAAAAAAVVZUVLTXounKlSvrRNF0twYNGkTr1q0jNzc39t9//8jNzd3rtf/+\n+0fDhg2rOy4AAAAkXX5+fixbtizeeOONePPNN+Of//xnbN26NWXPy8rKihNOOCEGDBgQxx13nD/0\nBNJCoRQAAAAAIMl2F01XrFixx7Vq1aooLCys7ngp1bJlyy8tnX72/WbNmlV3VAAAANirRCIR7777\nbml59M0334yPPvoo5c9t0KBBHHPMMdGvX7845ZRTokWLFil/JsBnKZQCAAAAAKRJcXFxrF27Nj76\n6KNYvXr1F1537txZ3RHTpnHjxuWWTnNzc6NVq1ZOYQEAACCl1qxZs0d59J133oldu3al5dlZWVlx\nzDHHxLe//W0lUqDaKZQCAAAAANQAJSUlsX79+vjoo49Kr9WrV5cWTrdt21bdEatFZmZmNG/ePFq0\naBEtW7aMFi1a7HH/Ze81b948GjRoUN3xAQAAqCESiUSsXr06Vq5cuce1atWqlH50/d5kZWVFr169\nSkukOTk5aX0+wJdRKAUAAAAAqAU2btxYWi79bNn0ww8/jC1btlR3vBqpWbNmXyidflkhtWnTpqVX\ns2bNokmTJtUdHwAAgCpYu3ZtrF27NlatWlVaGF25cmV8+OGH1R0tjj/++DjttNPixBNPVCIFaiSF\nUgAAAACAWq6goCBWr14dn376aXz88cfxySefxL///e/SX6KtXbu2uiPWSs2aNSstmDZt2jRycnJK\nC6mtWrX60oJqbm5udUcHAACokwoKCuLjjz/e4/9316xZU3r/6aefRlFRUXXHLNWpU6fo2bNn9OrV\nK771rW/540WgxlMoBQAAAACoBz77y7a9Xfn5+dUdsc5p0aJFNGnSZI+radOm0bhx49L7Jk2aRKNG\njSIrKysaNmwYWVlZX7g++/5+++0X2dnZ0ahRoz1emzZtWt3/uAAAAJVWUlISmzdvjo0bN8bGjRtj\n06ZNsWHDhti0aVPpe599f8eOHdUduUxt27aNY445Jnr16hXHHnts7LffftUdCaBSFEoBAAAAAKh1\np7ywd7sLqtnZ2Xstnu6+b9iw4R6vu7/32Wtv32/QoEFkZmZGgwYNIisrq/T+s1dmZuZev+ckHgAA\nqDsKCgpi586dUVBQsMf9zp07Y/PmzZGfn196bd26tfR127ZtsWXLltL3avsfNzZr1iyOOeaY0qtj\nx47VHQlgnyiUAgAAAABQruLi4tITYXZf69evj/Xr15fe735/27Zt1R2XWqBp06bRsGHDaNiwYWlh\nNSsrq/T+s9/77Ovn7z9bct19//mv9zbz2dndBdjMzMzIyMgofd19ZWZmRkTs9f2MjIwyv1fRPcqb\na9SoUfX8hwIAoNJ27NgRRUVFkUgkIpFIRFFRUenXn73f/fXXvva10q8/fxUWFu5xX1xcXLquuLh4\nj9e93e+e333/+bldu3aVlkF33+++CgsLY/v27XstjtZXhx9+eHTr1i0OP/zw6Nq1a3Tp0qW6IwEk\nlUIpAAAAAABJVVBQsEfB9LOF08+WUDdt2hSJRKK64wIAAMAXHHTQQfH1r3+99OratWtkZ2dXdyyA\nlFIoBQAAAACgWpSUlMTmzZv3KJl+/rTT3d+r7R+DCAAAQM3VqlWr6Nq1a2l59KijjooWLVpUdyyA\ntFMoBQAAAACgxkskEpGXl1futXnz5tL7HTt2VHdsAAAAapCmTZtGx44do1OnTnu8tmnTprqjAdQI\nCqUAAAAAANRZn3zySWnRdNOmTXsUTne/v3Xr1ti2bVvs2LEjtm3b5jRUAACAWi43NzcOPPDAOOSQ\nQ6Jjx47RuXPnOOyww6J9+/bVHQ2gRlMoBQAAAACAzykoKIjt27fvcW3dujU2b94cW7ZsiS1btpTe\nf/69rVu3Vnd8AACAOisnJyfatWsX7dq1i7Zt237hvk2bNpGVlVXdMQFqJYVSAAAAAABIsh07dsT2\n7dtjx44dUVBQsNevd7+3a9euSCQSpVdhYeFe7xOJROTl5cXOnTtj165dpa+7du2KgoKC6v5HBgAA\nqJKsrKxo1apVtG7dOlq3bh377bffHq+tW7cu/X5ubm5kZ2dXd2SAOkuhFAAAAAAA6oj8/PzSkune\niqc7d+6MwsLCPd777PXZ739+bne5taioqPQqLi6ORCIRxcXFe7y/t+/t3Lmzuv/1AAAAaZCTkxOt\nWrUqvfbbb78v3H/2vebNm1d3ZAD+l0IpAAAAAAD8v3buIMVCGAigYJNofvD+txXMrBQV/2qGcdFV\nEDAdEXH9kH+1B6vruh6x6vn6Ptv/4nqOW/d1j1f3gPUcuX6bPe23bYsxRowxYtu2iIjLbJ/f90/3\n/cUzhLgAAHzTe49SSpRSotYatdbj+ml2P5+mKeZ5jtZafD6fY7XWovd+me373vtl3c+WZXn7swDw\nC4JSAAAAAAAAAAAAgOTK2y8AAAAAAAAAAAAAwLsEpQAAAAAAAAAAAADJCUoBAAAAAAAAAAAAkhOU\nAgAAAAAAAAAAACQnKAUAAAAAAAAAAABITlAKAAAAAAAAAAAAkJygFAAAAAAAAAAAACA5QSkAAAAA\nAAAAAABAcoJSAAAAAAAAAAAAgOQEpQAAAAAAAAAAAADJCUoBAAAAAAAAAAAAkhOUAgAAAAAAAAAA\nACQnKAUAAAAAAAAAAABITlAKAAAAAAAAAAAAkJygFAAAAAAAAAAAACA5QSkAAAAAAAAAAABAcoJS\nAAAAAAAAAAAAgOQEpQAAAAAAAAAAAADJCUoBAAAAAAAAAAAAkhOUAgAAAAAAAAAAACQnKAUAAAAA\nAAAAAABITlAKAAAAAAAAAAAAkJygFAAAAAAAAAAAACC5HxuEef3e/IMXAAAAAElFTkSuQmCC\n" } }, "id": "e03facff-0b83-4b81-a9e0-164af853e9ed" }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [], "source": [ "_df_itertor = iter(df)" ], "id": "36465038-7850-45bc-9d7d-298f8bbb3351" }, { "cell_type": "code", "execution_count": 82, "metadata": {}, "outputs": [], "source": [ "next(_df_itertor)" ], "id": "30668b93-7494-4e85-b2cc-8b5e1c07f2e9" }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [], "source": [ "next(_df_itertor)" ], "id": "c02e70ae-24f2-4697-bd50-1d3906b49df2" }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [], "source": [ "next(_df_itertor)" ], "id": "6880e7ea-8e1a-4bc8-8e76-e184b34bad5f" }, { "cell_type": "markdown", "metadata": {}, "source": [ "### ***사용자정의 이터레이터***\n", "\n", "`-` 내가 이터레이터를 만들어보자.\n", "\n", "`-` 찌를 내는 순간 for문이 멈추도록 하는 이터레이터를 만들자." ], "id": "e6b25e72-ddbe-416e-adc5-9f4234c77787" }, { "cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [], "source": [ "class RPS_ITERATOR: # 찌를 내는순간 for문이 멈추도록 하는 이터레이터를 만들자\n", " def __init__(self): \n", " self.candidate = [\"묵\",\"찌\",\"빠\"] \n", " def __iter__(self):\n", " return self \n", " def __next__(self):\n", " action = np.random.choice(self.candidate)\n", " if action == \"찌\":\n", " print(\"찌가 나와서 for문을 멈춥니다\")\n", " raise StopIteration\n", " else:\n", " return action" ], "id": "2f51c263-fad2-4f51-83fb-df8f8844687f" }, { "cell_type": "code", "execution_count": 87, "metadata": {}, "outputs": [], "source": [ "a = RPS_ITERATOR()" ], "id": "3b046906-92a8-4bbd-ba39-75d4aee6be87" }, { "cell_type": "code", "execution_count": 89, "metadata": {}, "outputs": [], "source": [ "a.__next__()" ], "id": "0356608f-a756-4a08-aa76-837bf05bbe1d" }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [], "source": [ "a.__next__()" ], "id": "1b33cb7e-32ab-4bee-bb2f-ad4a8bbe702b" }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [], "source": [ "a.__next__()" ], "id": "bec9cf1a-0c7e-425b-afb5-8a6768d7c845" }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "찌가 나와서 for문을 멈춥니다" ] } ], "source": [ "a.__next__()" ], "id": "6d32df3e-4d94-4d09-945c-d207d385e7ea" }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "빠\n", "묵\n", "묵\n", "빠\n", "빠\n", "찌가 나와서 for문을 멈춥니다" ] } ], "source": [ "for i in a:\n", " print(i)" ], "id": "93d632ec-5416-44e8-8441-8863e7771c3b" }, { "cell_type": "markdown", "metadata": {}, "source": [ "### ***range()***\n", "\n", "`-` 파이썬에서 for문을 처음 배울 때: range(5)를 써라!" ], "id": "9d579e8c-ca7a-42ef-babe-e341ca6659f2" }, { "cell_type": "code", "execution_count": 95, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "0\n", "1\n", "2\n", "3\n", "4" ] } ], "source": [ "for i in range(5):\n", " print(i)" ], "id": "91bfd470-e70b-4fcb-a2c3-abea705292f0" }, { "cell_type": "markdown", "metadata": {}, "source": [ "- range(5)가 도데체 무엇이길래?\n", "\n", "`-` `range(5)`의 정체는 그냥 iterable object이다." ], "id": "f2a3472d-c5c4-4c21-91dd-e8477d821a18" }, { "cell_type": "code", "execution_count": 101, "metadata": {}, "outputs": [], "source": [ "set(dir(range(5))) & {'__iter__','__next__'}" ], "id": "aee229a8-0e90-47e2-8fb9-f8fd85946bec" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`-` 그래서 언제든지 iterator로 바꿀 수 있다." ], "id": "3614feb5-b074-489f-82de-ccbf8cd71855" }, { "cell_type": "code", "execution_count": 102, "metadata": {}, "outputs": [], "source": [ "rtor= iter(range(5))\n", "rtor" ], "id": "d677e733-4e89-4ead-8a3c-e1077c87d40e" }, { "cell_type": "code", "execution_count": 103, "metadata": {}, "outputs": [], "source": [ "set(dir(rtor)) & {'__iter__','__next__'}" ], "id": "f37ac9f2-b5f6-4c4c-8bef-028479339141" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`-` for문에서 range(5)가 행동하는 방법?" ], "id": "a0d1de8c-7bbf-4f44-98fc-27b5717cc3fa" }, { "cell_type": "code", "execution_count": 104, "metadata": {}, "outputs": [], "source": [ "rtor = iter(range(5))" ], "id": "3053bffb-861a-4e68-8ad2-521454d9ffb5" }, { "cell_type": "code", "execution_count": 105, "metadata": {}, "outputs": [], "source": [ "rtor.__next__()" ], "id": "6f1e13d8-c8d6-4f67-afaf-b5fa26256659" }, { "cell_type": "code", "execution_count": 106, "metadata": {}, "outputs": [], "source": [ "rtor.__next__()" ], "id": "266c263f-39bc-4b29-a788-b3c71bc19c1a" }, { "cell_type": "code", "execution_count": 107, "metadata": {}, "outputs": [], "source": [ "rtor.__next__()" ], "id": "f8c072f7-579c-4f27-9662-0fb9fc1f6826" }, { "cell_type": "code", "execution_count": 108, "metadata": {}, "outputs": [], "source": [ "rtor.__next__()" ], "id": "f9fb7229-8628-4e01-91f7-edff221a7e96" }, { "cell_type": "code", "execution_count": 109, "metadata": {}, "outputs": [], "source": [ "rtor.__next__()" ], "id": "18ffad6d-7345-4988-94c4-db498e140c1e" }, { "cell_type": "code", "execution_count": 110, "metadata": {}, "outputs": [], "source": [ "rtor.__next__()" ], "id": "f4c0bdec-1e2d-44aa-a645-c9fe45a48a67" }, { "cell_type": "markdown", "metadata": {}, "source": [ "### ***zip***\n", "\n", "`-` 이터레이터의 개념을 알면 for문에 대한 이해도가 대폭 상승한다." ], "id": "5aa1696d-952c-4a94-90f7-edb9a6982011" }, { "cell_type": "code", "execution_count": 114, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1 a\n", "2 b\n", "3 c" ] } ], "source": [ "for i,j in zip([1,2,3],'abc'):\n", " print(i,j)" ], "id": "9b639b6b-149c-4e29-88d8-fa224201f310" }, { "cell_type": "markdown", "metadata": {}, "source": [ "- zip은 뭐지?" ], "id": "920901cc-848a-4052-bfa4-1b11459d2870" }, { "cell_type": "code", "execution_count": 115, "metadata": {}, "outputs": [], "source": [ "zip([1,2,3],'abc')" ], "id": "4f338722-e742-40fa-b109-99bdfe69c7a8" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`-` 어차피 `for i in ????`: 의 ???? 자리는 iterable object의 자리이다." ], "id": "23d972a5-50d6-4a64-b11c-ab99a0442f35" }, { "cell_type": "code", "execution_count": 116, "metadata": {}, "outputs": [], "source": [ "set(dir(zip([1,2,3],'abc'))) & {'__iter__','__next__'}" ], "id": "535e9f82-4120-449e-be3f-05eb46593b8e" }, { "cell_type": "markdown", "metadata": {}, "source": [ "- `__next__()`함수가 있음 $\\to$ `zip([1,2,3],'abc')`은 그자체로\n", " iterator 였다!" ], "id": "1d2a37df-3c1f-4951-9ab6-6d9d546a4a4f" }, { "cell_type": "code", "execution_count": 117, "metadata": {}, "outputs": [], "source": [ "z= zip([1,2,3],'abc')" ], "id": "a9e36aa7-b5a1-41c6-b6de-d4eda6f7f6bd" }, { "cell_type": "code", "execution_count": 118, "metadata": {}, "outputs": [], "source": [ "z.__next__()" ], "id": "09473d01-67ed-4121-9b8f-457b858e462c" }, { "cell_type": "code", "execution_count": 119, "metadata": {}, "outputs": [], "source": [ "z.__next__()" ], "id": "da12e92b-1643-44c8-8371-a8a9163ca0ae" }, { "cell_type": "code", "execution_count": 120, "metadata": {}, "outputs": [], "source": [ "z.__next__()" ], "id": "067399f3-3017-4dc8-af9a-50d3b93b4f2e" }, { "cell_type": "code", "execution_count": 121, "metadata": {}, "outputs": [], "source": [ "z.__next__()" ], "id": "8ddb2fcb-d6c1-4c92-b8d8-1f8a469578f2" }, { "cell_type": "markdown", "metadata": {}, "source": [ "***또다른 이해: 그러고보니까 `zip([1,2,3],'abc')`은 뭐하는 문법이지?***" ], "id": "5ad88195-3ec0-4f26-adec-bdbd91e4095c" }, { "cell_type": "code", "execution_count": 489, "metadata": {}, "outputs": [], "source": [ "zip?" ], "id": "7f4b88f6-e8c4-4e6d-9306-1da2f4a6a83d" }, { "cell_type": "markdown", "metadata": {}, "source": [ "- 너 클래스였어?" ], "id": "88e38039-051e-43d9-935f-8a79dbd0270c" }, { "cell_type": "code", "execution_count": 124, "metadata": {}, "outputs": [], "source": [ "iterator_from_zip = zip.__call__([1,2,3],'abc')" ], "id": "f3300349-d57e-4d33-8787-fb2e10e1d9a6" }, { "cell_type": "code", "execution_count": 125, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1 a\n", "2 b\n", "3 c" ] } ], "source": [ "for i,j in iterator_from_zip:\n", " print(i,j)" ], "id": "fafceb95-b673-4cb8-a862-540b585f910a" }, { "cell_type": "markdown", "metadata": {}, "source": [ "> 파이썬의 작은 비밀: zip은 iterator를 찍어내는 클래스이다.\n", "\n", "### ***enumerate***\n", "\n", "`-` zip의 짝궁으로 enumerate가 있음" ], "id": "a5c924af-4d3e-46e5-a38c-e6394839dcc4" }, { "cell_type": "code", "execution_count": 129, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "0 a\n", "1 b\n", "2 c" ] } ], "source": [ "for i,s in enumerate('abc'):\n", " print(i,s)" ], "id": "dd0a4471-a643-457e-b24d-4c65b454b114" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`-` `enumerate('abc')`도 문법상 iterable object 아니면 iterator 임." ], "id": "f3638bc2-7c44-42c3-8336-113ba91b0005" }, { "cell_type": "code", "execution_count": 130, "metadata": {}, "outputs": [], "source": [ "set(dir(enumerate('abc'))) & {'__iter__', '__next__'}" ], "id": "3f37cf2b-31bc-4732-88ec-00c0712b227a" }, { "cell_type": "markdown", "metadata": {}, "source": [ "- iterator 였군" ], "id": "3caecb27-9a96-46f5-aa87-6686c5f59b91" }, { "cell_type": "code", "execution_count": 131, "metadata": {}, "outputs": [], "source": [ "iterator = enumerate('abc')" ], "id": "7a0aecad-2e5b-497f-bc50-3865f3764257" }, { "cell_type": "code", "execution_count": 132, "metadata": {}, "outputs": [], "source": [ "next(iterator)" ], "id": "7fde70d4-2157-479f-a5bd-9275945b4218" }, { "cell_type": "code", "execution_count": 133, "metadata": {}, "outputs": [], "source": [ "next(iterator)" ], "id": "8963f8bc-8836-4eaf-a219-1ce09ecdaeb4" }, { "cell_type": "code", "execution_count": 134, "metadata": {}, "outputs": [], "source": [ "next(iterator)" ], "id": "615973c0-1882-47bb-ad1a-2d367fe5a404" }, { "cell_type": "code", "execution_count": 135, "metadata": {}, "outputs": [], "source": [ "next(iterator)" ], "id": "8678ca9b-9d77-4434-8e41-2084dd597c95" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`-` 참고: enumerate 는 클래스임" ], "id": "44d32292-3ee6-40b4-b18b-8f3b36808a3f" }, { "cell_type": "code", "execution_count": 136, "metadata": {}, "outputs": [], "source": [ "enumerate?" ], "id": "0df4d6ff-6bbc-42d4-8f45-f013e6a831b7" }, { "cell_type": "markdown", "metadata": {}, "source": [ "> 파이썬의 작은 비밀: enumerate 역시 iterator를 찍어내는 클래스다.\n", "\n", "> 파이썬의 비밀12: iterator나 iterable object만 for문과 함께 사용할 수\n", "> 있다.\n", "\n", "## 비밀을 알아서 좋은점\n", "\n", "### ***파이썬의 에러메시지 이해***\n", "\n", "`TypeError`: 타입이 맞지 않는 연산을 수행하려고 할 때 발생. 예를 들어,\n", "숫자와 문자열을 더하려고 할 때 발생." ], "id": "3c71d70c-dac1-4e02-9986-e08de4e22e50" }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "result = 10 + \"20\" # TypeError: unsupported operand type(s) for +: 'int' and 'str'" ], "id": "381349be-dd27-42e0-88de-115ab7bfe2c2" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`SyntaxError`: 코드의 구문이 잘못되었을 때 발생. 주로 오타, 괄호 불일치,\n", "콜론(:) 빠뜨림 등의 문제로 인해 발생." ], "id": "8e6b7e2f-0977-4453-9a97-8e4813c263b1" }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "if x == 5\n", " print(\"x is equal to 5\") # SyntaxError: invalid syntax" ], "id": "1c3866b8-1eed-443b-8db9-513cabe8177e" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`NameError`: 정의되지 않은 변수나 함수를 사용하려고 할 때 발생." ], "id": "95e811c8-28a5-4353-be3f-57a91afb861c" }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "print(unknown_variable) # NameError: name 'unknown_variable' is not defined" ], "id": "09d96f74-5c42-490c-9c38-20c9c587eee1" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`ValueError`: 함수나 메서드에 전달되는 인자의 값이 올바르지 않을 때\n", "발생." ], "id": "d798177d-d48e-4f94-9c1b-e84ab4beb5c8" }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "int_value = int(\"abc\") # ValueError: invalid literal for int() with base 10: 'abc'" ], "id": "6a7636ea-5b3e-4947-b4b1-3d538ac5f73b" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`AttributeError`: 객체가 속성(attribute)이나 메서드(method)를 가지고\n", "있지 않을 때 발생" ], "id": "4640ab91-4412-4dfb-b4a8-9b646d7bf284" }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "my_list = [1, 2, 3]\n", "my_list.append(4)\n", "my_list.upper() # AttributeError: 'list' object has no attribute 'upper'" ], "id": "a518b251-f7b6-4482-80bc-e7e00175d731" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`ImportError`: 모듈을 임포트하는 과정에서 문제가 발생할 때 발생.\n", "임포트하려는 모듈이 존재하지 않거나, 임포트 경로 설정이 잘못된 경우에\n", "해당." ], "id": "696000ce-f6a6-4690-8dc8-d2c623660d51" }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "import non_existent_module # ImportError: No module named 'non_existent_module'" ], "id": "26d3f7d9-5848-446d-b21d-0899ba8ae378" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`IOError`: 파일 입출력 작업 중에 발생하는 에러. 파일이 존재하지 않거나,\n", "파일에 쓰기 권한이 없는 경우 등에 해당." ], "id": "0e46f4e4-f1a6-444a-aae7-85905b991559" }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "file = open('file.txt', 'r') # IOError: [Errno 2] No such file or directory: 'file.txt'" ], "id": "50ea1825-86e9-44e8-9167-003735a2b3e2" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`KeyboardInterrupt`: 사용자가 프로그램의 실행을 중단할 때 발생." ], "id": "ecb6f1cb-ad9b-4d56-ac9a-0f43d4358713" }, { "cell_type": "code", "execution_count": 137, "metadata": {}, "outputs": [], "source": [ "while True:\n", " pass # 무한 루프\n", "# KeyboardInterrupt: \n" ], "id": "e66466d3-cbfe-4b25-81db-b38f66026423" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`IndexError`: 유효하지 않은 인덱스를 사용하여 시퀀스(리스트, 튜플,\n", "문자열 등)의 요소에 접근하려고 할 때 발생." ], "id": "e76cb5bb-f443-4ce4-87a7-fd1d5d334153" }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "my_list = [1, 2, 3]\n", "print(my_list[5]) # IndexError: list index out of range" ], "id": "2e5de641-9383-44f6-ab8f-9c0c96a166aa" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`KeyError`: 딕셔너리에서 존재하지 않는 키를 사용하여 요소에 접근하려고\n", "할 때 발생." ], "id": "c189a543-2651-4b9f-ac7a-994477424fb2" }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "my_dict = {'name': 'John', 'age': 25}\n", "print(my_dict['address']) # KeyError: 'address'" ], "id": "be04a2fc-ef62-4b60-85ea-ab4062f28ffa" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`FileNotFoundError`: 존재하지 않는 파일을 열려고 할 때 발생." ], "id": "38a5dcdd-7806-41cf-a5d9-5d10d2b788de" }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "file = open('nonexistent_file.txt') # FileNotFoundError: [Errno 2] No such file or directory: 'nonexistent_file.txt'" ], "id": "efda775f-2532-4bd9-8539-7e93d0a1fd42" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`ZeroDivisionError`: 0으로 나누기 연산을 수행하려고 할 때 발생." ], "id": "f13f11d3-d0d8-4e69-86e3-6384ad343791" }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "result = 10 / 0 # ZeroDivisionError: division by zero" ], "id": "bfb2b66c-ced4-4b84-b688-62e8770389f0" }, { "cell_type": "markdown", "metadata": {}, "source": [ "### ***`TypeError`에 대한 심층분석***\n", "\n", "`-` `.__add__` 가 올바르게 정의되지 않아서 생기는 경우\n", "\n", " ---------------------------------------------------------------------------\n", " TypeError Traceback (most recent call last)\n", " Cell In[37], line 1\n", " ----> 1 boram + '등록'+ '휴학' + '등록' + '휴학'\n", "\n", " TypeError: unsupported operand type(s) for +: 'NoneType' and 'str'\n", "\n", "`-` `.__getitem__`이 정의되지 않은 오브젝트에서 인덱싱을 시도할때 생기는\n", "오류\n", "\n", " ---------------------------------------------------------------------------\n", " TypeError Traceback (most recent call last)\n", " Cell In[57], line 1\n", " ----> 1 a[0], a[1]\n", "\n", " TypeError: 'RPS' object is not subscriptable\n", "\n", "`-` `.__setitem__`이 정의되지 않은 오브젝트에서 할당을 시도할때 생기는\n", "오류\n", "\n", " ---------------------------------------------------------------------------\n", " TypeError Traceback (most recent call last)\n", " Cell In[77], line 1\n", " ----> 1 a[0] = '보' \n", "\n", " TypeError: 'RPS_Ver2' object does not support item assignment\n", "\n", "`-` `.__len__` 이 정의되지 않은 오브젝트에서 len을 이용할때 생기는 오류\n", "\n", " ---------------------------------------------------------------------------\n", " TypeError Traceback (most recent call last)\n", " Cell In[122], line 1\n", " ----> 1 len(a)\n", "\n", " TypeError: object of type 'RPS_Ver3' has no len()\n", "\n", "`-` `.__call__`이 정의되지 않은 오브젝트를 함수처럼 이용하려 할때 생기는\n", "오류\n", "\n", " ---------------------------------------------------------------------------\n", " TypeError Traceback (most recent call last)\n", " Cell In[402], line 1\n", " ----> 1 a()\n", "\n", " TypeError: 'Klass' object is not callable\n", "\n", "`-` `.__iter__`가 정의되지 않은 오브젝트를 iterable 오브젝트처럼\n", "사용하려 할때 생기는 오류\n", "\n", " ---------------------------------------------------------------------------\n", " TypeError Traceback (most recent call last)\n", " Cell In[422], line 2\n", " 1 a=5 \n", " ----> 2 for i in a:\n", " 3 print(i) \n", "\n", " TypeError: 'int' object is not iterable\n", "\n", "# 숙제\n", "\n", "`(1)` 아래의 코드를 관찰하라." ], "id": "56375836-e33f-4111-858f-84cbd8be31c5" }, { "cell_type": "code", "execution_count": 459, "metadata": {}, "outputs": [], "source": [ "iterator = enumerate('abcf',1)" ], "id": "11bf8ab9-54ff-4b0c-acdd-0ed84d6646bf" }, { "cell_type": "code", "execution_count": 460, "metadata": {}, "outputs": [], "source": [ "next(iterator)" ], "id": "63f0be42-b892-4a5b-b4de-9ae5d4202f43" }, { "cell_type": "code", "execution_count": 461, "metadata": {}, "outputs": [], "source": [ "next(iterator)" ], "id": "a8e2aee0-8082-404f-a1a6-04778870f13e" }, { "cell_type": "code", "execution_count": 462, "metadata": {}, "outputs": [], "source": [ "next(iterator)" ], "id": "96e2098d-7e9e-4789-931d-fae161da893b" }, { "cell_type": "code", "execution_count": 463, "metadata": {}, "outputs": [], "source": [ "next(iterator)" ], "id": "f50f96a3-bf32-4276-aa2f-b84fe221813a" }, { "cell_type": "code", "execution_count": 464, "metadata": {}, "outputs": [], "source": [ "next(iterator)" ], "id": "c6e65bb7-0b0b-411a-a358-e86c11d7e187" }, { "cell_type": "markdown", "metadata": {}, "source": [ "이를 바탕으로 `enumerate('abcf',1)`의 기능을 유추해볼 것.\n", "\n", "`(2)` enumrate를 이용하여 아래의 코드를 개선하여라." ], "id": "6e8d8c84-c178-4d4f-85ae-718553ae369e" }, { "cell_type": "code", "execution_count": 465, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1: 아이언맨\n", "2: 토르\n", "3: 헐크\n", "4: 블랙위도우\n", "5: 로키" ] } ], "source": [ "lst = ['아이언맨','토르','헐크','블랙위도우','로키']\n", "for i in range(len(lst)):\n", " print('{}: {}'.format(i+1,lst[i]))" ], "id": "d8b56f1d-9872-4719-9a80-d6da5903ce42" }, { "cell_type": "markdown", "metadata": {}, "source": [ "`(3)` 앞면과 뒷면이 나올 확률이 각각 1/2인 동전을 생각하자. 하니와\n", "규빈은 이 동전을 연속으로 던져서 아래와 같은 룰을 정하여 내기를 하였다.\n", "\n", "- 동전을 연속으로 반복하여 던진다. 최근 2회의 결과가 (앞면,앞면) 이\n", " 나오면 하니의 승리\n", "- 동전을 연속으로 반복하여 던진다. 최근 2회의 결과가 (뒷면,뒷면) 이\n", " 나오면 규빈의 승리\n", "\n", "예를들어 동전을 반복하여 던져 아래와 같이 나온다면 하니의 승리이다.\n", "\n", "- (앞면, 뒷면, 앞면, 뒷면, 앞면, 앞면)\n", "- (앞면, 뒷면, 앞면, 앞면)\n", "\n", "동전을 반복하여 던져 아래와 같이 나온다면 규빈의 승리이다.\n", "\n", "- (앞면, 뒷면, 앞면, 뒷면, 뒷면)\n", "- (뒷면, 앞면, 뒷면, 뒷면)\n", "\n", "이 내기는 하니가 유리한가? 규빈이 유리한가? 시뮬레이션을 통해 검증하라.\n", "\n", "> **Note**\n", ">\n", "> **hint**: 당연히 5:5겠죠?\n", "\n", "`(4)` 앞면과 뒷면이 나올 확률이 각각 1/2인 동전을 생각하자. 하니와\n", "규빈은 이 동전을 연속으로 던져서 아래와 같은 룰을 정하여 내기를 하였다.\n", "\n", "- 동전을 연속으로 반복하여 던진다. 최근 2회의 결과가 (뒷면,앞면) 이\n", " 나오면 하니의 승리\n", "- 동전을 연속으로 반복하여 던진다. 최근 2회의 결과가 (뒷면,뒷면) 이\n", " 나오면 규빈의 승리\n", "\n", "이 내기는 하니가 유리한가? 규빈이 유리한가? 시뮬레이션을 통해 검증하라.\n", "\n", "> **Note**\n", ">\n", "> **hint**: 이 경우도 똑같이 유리합니다.\n", "\n", "`(5)` 앞면과 뒷면이 나올 확률이 각각 1/2인 동전을 생각하자. 하니와\n", "규빈은 이 동전을 연속으로 던져서 아래와 같은 룰을 정하여 내기를 하였다.\n", "\n", "- 동전을 연속으로 반복하여 던진다. 최근 2회의 결과가 (앞면,뒷면) 이\n", " 나오면 하니의 승리\n", "- 동전을 연속으로 반복하여 던진다. 최근 2회의 결과가 (뒷면,뒷면) 이\n", " 나오면 규빈의 승리\n", "\n", "이 내기는 하니가 유리한가? 규빈이 유리한가? 시뮬레이션을 통해 검증하라.\n", "\n", "> **Note**\n", ">\n", "> **hint**: 이 내기는 하니가 유리합니다. 저는 1000회 시뮬레이션 결과\n", ">\n", "> {'하니': 761, '규빈': 239} ## 하니가 761번 승리\n", ">\n", "> 와 같이 결과가 나왔습니다. 왜 하니가 유리한지 스스로 고민해보시기\n", "> 바랍니다. (질문해도 되고요)" ], "id": "aeb0b5fd-d43d-40cf-a777-f3f1cba527a3" } ], "nbformat": 4, "nbformat_minor": 5, "metadata": { "kernelspec": { "name": "python3", "display_name": "Python 3", "language": "python" }, "language_info": { "name": "python", "codemirror_mode": { "name": "ipython", "version": "3" }, "file_extension": ".py", "mimetype": "text/x-python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.16" } } }