No path specified. Models will be saved in: "AutogluonModels/ag-20231201_113248/"
Beginning AutoGluon training ...
AutoGluon will save models to "AutogluonModels/ag-20231201_113248/"
AutoGluon Version: 0.8.2
Python Version: 3.10.13
Operating System: Linux
Platform Machine: x86_64
Platform Version: #26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Jul 13 16:27:29 UTC 2
Disk Space Avail: 248.33 GB / 490.57 GB (50.6%)
Train Data Rows: 10000
Train Data Columns: 2
Label Column: Weight_Loss
Preprocessing data ...
AutoGluon infers your prediction problem is: 'regression' (because dtype of label-column == float and many unique label-values observed).
Label info (max, min, mean, stddev): (18.725299456466026, -3.4848875790233675, 5.11908, 6.09267)
If 'regression' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
Using Feature Generators to preprocess the data ...
Fitting AutoMLPipelineFeatureGenerator...
Available Memory: 125414.99 MB
Train Data (Original) Memory Usage: 0.02 MB (0.0% of available memory)
Inferring data type of each feature based on column values. Set feature_metadata_in to manually specify special dtypes of the features.
Stage 1 Generators:
Fitting AsTypeFeatureGenerator...
Note: Converting 2 features to boolean dtype as they only contain 2 unique values.
Stage 2 Generators:
Fitting FillNaFeatureGenerator...
Stage 3 Generators:
Fitting IdentityFeatureGenerator...
Stage 4 Generators:
Fitting DropUniqueFeatureGenerator...
Stage 5 Generators:
Fitting DropDuplicatesFeatureGenerator...
Types of features in original data (raw dtype, special dtypes):
('bool', []) : 2 | ['Supplement', 'Exercise']
Types of features in processed data (raw dtype, special dtypes):
('int', ['bool']) : 2 | ['Supplement', 'Exercise']
0.0s = Fit runtime
2 features in original data used to generate 2 features in processed data.
Train Data (Processed) Memory Usage: 0.02 MB (0.0% of available memory)
Data preprocessing and feature engineering runtime = 0.03s ...
AutoGluon will gauge predictive performance using evaluation metric: 'root_mean_squared_error'
This metric's sign has been flipped to adhere to being higher_is_better. The metric score can be multiplied by -1 to get the metric value.
To change this, specify the eval_metric parameter of Predictor()
Automatically generating train/validation split with holdout_frac=0.1, Train Rows: 9000, Val Rows: 1000
User-specified model hyperparameters to be fit:
{
'NN_TORCH': {},
'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {}, 'GBMLarge'],
'CAT': {},
'XGB': {},
'FASTAI': {},
'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],
'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],
'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}}, {'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
}
Fitting 11 L1 models ...
Fitting model: KNeighborsUnif ...
No valid features to train KNeighborsUnif... Skipping this model.
Fitting model: KNeighborsDist ...
No valid features to train KNeighborsDist... Skipping this model.
Fitting model: LightGBMXT ...
-1.0098 = Validation score (-root_mean_squared_error)
0.49s = Training runtime
0.0s = Validation runtime
Fitting model: LightGBM ...
-1.0098 = Validation score (-root_mean_squared_error)
0.24s = Training runtime
0.0s = Validation runtime
Fitting model: RandomForestMSE ...
-1.0098 = Validation score (-root_mean_squared_error)
0.33s = Training runtime
0.12s = Validation runtime
Fitting model: CatBoost ...
-1.0098 = Validation score (-root_mean_squared_error)
0.36s = Training runtime
0.0s = Validation runtime
Fitting model: ExtraTreesMSE ...
-1.0098 = Validation score (-root_mean_squared_error)
0.33s = Training runtime
0.02s = Validation runtime
Fitting model: NeuralNetFastAI ...
-1.0087 = Validation score (-root_mean_squared_error)
10.49s = Training runtime
0.02s = Validation runtime
Fitting model: XGBoost ...
-1.0098 = Validation score (-root_mean_squared_error)
0.14s = Training runtime
0.0s = Validation runtime
Fitting model: NeuralNetTorch ...
-1.01 = Validation score (-root_mean_squared_error)
26.12s = Training runtime
0.0s = Validation runtime
Fitting model: LightGBMLarge ...
-1.0098 = Validation score (-root_mean_squared_error)
0.26s = Training runtime
0.0s = Validation runtime
Fitting model: WeightedEnsemble_L2 ...
-1.0085 = Validation score (-root_mean_squared_error)
0.19s = Training runtime
0.0s = Validation runtime
AutoGluon training complete, total runtime = 39.3s ... Best model: "WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20231201_113248/")