No path specified. Models will be saved in: "AutogluonModels/ag-20231201_105859/"
Beginning AutoGluon training ...
AutoGluon will save models to "AutogluonModels/ag-20231201_105859/"
AutoGluon Version: 0.8.2
Python Version: 3.10.13
Operating System: Linux
Platform Machine: x86_64
Platform Version: #26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Jul 13 16:27:29 UTC 2
Disk Space Avail: 248.43 GB / 490.57 GB (50.6%)
Train Data Rows: 280
Train Data Columns: 2
Label Column: sales
Preprocessing data ...
AutoGluon infers your prediction problem is: 'regression' (because dtype of label-column == float and many unique label-values observed).
Label info (max, min, mean, stddev): (88.99437629756306, 10.335207096486446, 51.10189, 21.16757)
If 'regression' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
Using Feature Generators to preprocess the data ...
Fitting AutoMLPipelineFeatureGenerator...
Available Memory: 126321.75 MB
Train Data (Original) Memory Usage: 0.02 MB (0.0% of available memory)
Inferring data type of each feature based on column values. Set feature_metadata_in to manually specify special dtypes of the features.
Stage 1 Generators:
Fitting AsTypeFeatureGenerator...
Note: Converting 1 features to boolean dtype as they only contain 2 unique values.
Stage 2 Generators:
Fitting FillNaFeatureGenerator...
Stage 3 Generators:
Fitting IdentityFeatureGenerator...
Stage 4 Generators:
Fitting DropUniqueFeatureGenerator...
Stage 5 Generators:
Fitting DropDuplicatesFeatureGenerator...
Types of features in original data (raw dtype, special dtypes):
('float', []) : 1 | ['temp']
('object', []) : 1 | ['type']
Types of features in processed data (raw dtype, special dtypes):
('float', []) : 1 | ['temp']
('int', ['bool']) : 1 | ['type']
0.0s = Fit runtime
2 features in original data used to generate 2 features in processed data.
Train Data (Processed) Memory Usage: 0.0 MB (0.0% of available memory)
Data preprocessing and feature engineering runtime = 0.02s ...
AutoGluon will gauge predictive performance using evaluation metric: 'root_mean_squared_error'
This metric's sign has been flipped to adhere to being higher_is_better. The metric score can be multiplied by -1 to get the metric value.
To change this, specify the eval_metric parameter of Predictor()
Automatically generating train/validation split with holdout_frac=0.2, Train Rows: 224, Val Rows: 56
User-specified model hyperparameters to be fit:
{
'NN_TORCH': {},
'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {}, 'GBMLarge'],
'CAT': {},
'XGB': {},
'FASTAI': {},
'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],
'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'squared_error', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression', 'quantile']}}],
'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}}, {'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
}
Fitting 11 L1 models ...
Fitting model: KNeighborsUnif ...
-2.7316 = Validation score (-root_mean_squared_error)
0.01s = Training runtime
0.02s = Validation runtime
Fitting model: KNeighborsDist ...
-3.5558 = Validation score (-root_mean_squared_error)
0.01s = Training runtime
0.01s = Validation runtime
Fitting model: LightGBMXT ...
-3.1036 = Validation score (-root_mean_squared_error)
0.4s = Training runtime
0.0s = Validation runtime
Fitting model: LightGBM ...
-3.0864 = Validation score (-root_mean_squared_error)
0.18s = Training runtime
0.0s = Validation runtime
Fitting model: RandomForestMSE ...
-2.9027 = Validation score (-root_mean_squared_error)
0.27s = Training runtime
0.04s = Validation runtime
Fitting model: CatBoost ...
-2.7878 = Validation score (-root_mean_squared_error)
0.28s = Training runtime
0.0s = Validation runtime
Fitting model: ExtraTreesMSE ...
-2.88 = Validation score (-root_mean_squared_error)
0.39s = Training runtime
0.03s = Validation runtime
Fitting model: NeuralNetFastAI ...
-2.6541 = Validation score (-root_mean_squared_error)
2.25s = Training runtime
0.01s = Validation runtime
Fitting model: XGBoost ...
-3.061 = Validation score (-root_mean_squared_error)
0.11s = Training runtime
0.0s = Validation runtime
Fitting model: NeuralNetTorch ...
-2.6146 = Validation score (-root_mean_squared_error)
1.91s = Training runtime
0.01s = Validation runtime
Fitting model: LightGBMLarge ...
-2.9062 = Validation score (-root_mean_squared_error)
0.25s = Training runtime
0.0s = Validation runtime
Fitting model: WeightedEnsemble_L2 ...
-2.5554 = Validation score (-root_mean_squared_error)
0.23s = Training runtime
0.0s = Validation runtime
AutoGluon training complete, total runtime = 6.52s ... Best model: "WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20231201_105859/")