06wk-23: 취업(다중공선성) / Ridge – 추가해설

Author

최규빈

Published

October 5, 2023

1. 강의영상

2. Imports

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
import sklearn.linear_model

3. Data

df = pd.read_csv("https://raw.githubusercontent.com/guebin/MP2023/main/posts/employment_multicollinearity.csv")
np.random.seed(43052)
df['employment_score'] = df.gpa * 1.0 + df.toeic* 1/100 + np.random.randn(500)
df
employment_score gpa toeic toeic0 toeic1 toeic2 toeic3 toeic4 toeic5 toeic6 ... toeic490 toeic491 toeic492 toeic493 toeic494 toeic495 toeic496 toeic497 toeic498 toeic499
0 1.784955 0.051535 135 129.566309 133.078481 121.678398 113.457366 133.564200 136.026566 141.793547 ... 132.014696 140.013265 135.575816 143.863346 152.162740 132.850033 115.956496 131.842126 125.090801 143.568527
1 10.789671 0.355496 935 940.563187 935.723570 939.190519 938.995672 945.376482 927.469901 952.424087 ... 942.251184 923.241548 939.924802 921.912261 953.250300 931.743615 940.205853 930.575825 941.530348 934.221055
2 8.221213 2.228435 485 493.671390 493.909118 475.500970 480.363752 478.868942 493.321602 490.059102 ... 484.438233 488.101275 485.626742 475.330715 485.147363 468.553780 486.870976 481.640957 499.340808 488.197332
3 2.137594 1.179701 65 62.272565 55.957257 68.521468 76.866765 51.436321 57.166824 67.834920 ... 67.653225 65.710588 64.146780 76.662194 66.837839 82.379018 69.174745 64.475993 52.647087 59.493275
4 8.650144 3.962356 445 449.280637 438.895582 433.598274 444.081141 437.005100 434.761142 443.135269 ... 455.940348 435.952854 441.521145 443.038886 433.118847 466.103355 430.056944 423.632873 446.973484 442.793633
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
495 9.057243 4.288465 280 276.680902 274.502675 277.868536 292.283300 277.476630 281.671647 296.307373 ... 269.541846 278.220546 278.484758 284.901284 272.451612 265.784490 275.795948 280.465992 268.528889 283.638470
496 4.108020 2.601212 310 296.940263 301.545000 306.725610 314.811407 311.935810 309.695838 301.979914 ... 304.680578 295.476836 316.582100 319.412132 312.984039 312.372112 312.106944 314.101927 309.409533 297.429968
497 2.430590 0.042323 225 206.793217 228.335345 222.115146 216.479498 227.469560 238.710310 233.797065 ... 233.469238 235.160919 228.517306 228.349646 224.153606 230.860484 218.683195 232.949484 236.951938 227.997629
498 5.343171 1.041416 320 327.461442 323.019899 329.589337 313.312233 315.645050 324.448247 314.271045 ... 326.297700 309.893822 312.873223 322.356584 319.332809 319.405283 324.021917 312.363694 318.493866 310.973930
499 6.505106 3.626883 375 370.966595 364.668477 371.853566 373.574930 376.701708 356.905085 354.584022 ... 382.278782 379.460816 371.031640 370.272639 375.618182 369.252740 376.925543 391.863103 368.735260 368.520844

500 rows × 503 columns

4. True

- 신이라면 (=데이터가 만들어진 비밀을 알고 있다면) 아래와 같이 했을 것

## step1 --- toeic, gpa 만 남기고 나머지 변수를 삭제
df_train, df_test = sklearn.model_selection.train_test_split(df,test_size=0.3,random_state=42)
X = df_train.loc[:,'gpa':'toeic']
y = df_train.loc[:,'employment_score']
XX = df_test.loc[:,'gpa':'toeic']
yy = df_test.loc[:,'employment_score']
## step2
predictr = sklearn.linear_model.LinearRegression()
## step3 
predictr.fit(X,y)
## step4 -- pass 
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

- 평가

print(f'train_score: {predictr.score(X,y):.4f}')
print(f'test_score: {predictr.score(XX,yy):.4f}')
train_score: 0.9133
test_score: 0.9127

5. Baseline

- 모든 변수를 활용하여 회귀모형으로 적합 \(\to\) 최악의 결과

## step1 --- toeic, gpa 만 남기고 나머지 변수를 삭제
df_train, df_test = sklearn.model_selection.train_test_split(df,test_size=0.3,random_state=42)
X = df_train.loc[:,'gpa':'toeic499']
y = df_train.loc[:,'employment_score']
XX = df_test.loc[:,'gpa':'toeic499']
yy = df_test.loc[:,'employment_score']
## step2
predictr = sklearn.linear_model.LinearRegression()
## step3 
predictr.fit(X,y)
## step4 -- pass 
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

- 평가

print(f'train_score: {predictr.score(X,y):.4f}')
print(f'test_score: {predictr.score(XX,yy):.4f}')
train_score: 1.0000
test_score: 0.1171

6. Ridge

- 통계학자에게 자문: 이럴 경우 Ridge를 사용하면 됩니다..

## step1 --- toeic, gpa 만 남기고 나머지 변수를 삭제
df_train, df_test = sklearn.model_selection.train_test_split(df,test_size=0.3,random_state=42)
X = df_train.loc[:,'gpa':'toeic499']
y = df_train.loc[:,'employment_score']
XX = df_test.loc[:,'gpa':'toeic499']
yy = df_test.loc[:,'employment_score']
## step2
predictr = sklearn.linear_model.Ridge(alpha=1) # sklearn.linear_model.Ridge()와 같은코드
## step3 
predictr.fit(X,y)
## step4 -- pass 
Ridge(alpha=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

- 평가: 안되는데요..??

print(f'train_score: {predictr.score(X,y):.4f}')
print(f'test_score: {predictr.score(XX,yy):.4f}')
train_score: 1.0000
test_score: 0.1173

- 하이퍼 파라메터 튜닝 \(\alpha=1.5\)

## step1 --- toeic, gpa 만 남기고 나머지 변수를 삭제
df_train, df_test = sklearn.model_selection.train_test_split(df,test_size=0.3,random_state=42)
X = df_train.loc[:,'gpa':'toeic499']
y = df_train.loc[:,'employment_score']
XX = df_test.loc[:,'gpa':'toeic499']
yy = df_test.loc[:,'employment_score']
## step2
predictr = sklearn.linear_model.Ridge(alpha=1.5)
## step3 
predictr.fit(X,y)
## step4 -- pass 
#---# 
print(f'train_score: {predictr.score(X,y):.4f}')
print(f'test_score: {predictr.score(XX,yy):.4f}')
train_score: 1.0000
test_score: 0.1174
  • 조금 나아진것 같기도?

- 하이퍼 파라메터 튜닝 \(\alpha=5e8\)

## step1 --- toeic, gpa 만 남기고 나머지 변수를 삭제
df_train, df_test = sklearn.model_selection.train_test_split(df,test_size=0.3,random_state=42)
X = df_train.loc[:,'gpa':'toeic499']
y = df_train.loc[:,'employment_score']
XX = df_test.loc[:,'gpa':'toeic499']
yy = df_test.loc[:,'employment_score']
## step2
predictr = sklearn.linear_model.Ridge(alpha=5e8)
## step3 
predictr.fit(X,y)
## step4 -- pass 
#---# 
print(f'train_score: {predictr.score(X,y):.4f}')
print(f'test_score: {predictr.score(XX,yy):.4f}')
train_score: 0.7507
test_score: 0.7438

- 오라클에 비할바는 아니긴한데 공선성이 있는 경우라도 Ridge에서 적절한 alpha를 고른다면 망하는 모형을 만들진 않음

7. Ridge는 왜 결과를 좋게 만들까?

A. 정확한 설명

- SVD를 이용하여 이론적인 계산하면 sklearn.linear_model.LinearRegression()로 적합한 결과보다 sklearn.linear_model.Ridge()로 적합한 결과를 더 좋게 만드는 \(\alpha\)가 항상 존재함을 증명할 수 있음.

B. 직관적 설명 (엄밀하지 않은 설명)

Step1: LinearRegression은 왜 망했는가?

- 토익의 계수는 실제로 \(\frac{1}{100}\)이다. 적딩히

  • toeic_coef + … + toeic499_coef \(\approx\) 0.01 이라면

대충 맞는 답이다.

## step1 --- toeic, gpa 만 남기고 나머지 변수를 삭제
df_train, df_test = sklearn.model_selection.train_test_split(df,test_size=0.3,random_state=42)
X = df_train.loc[:,'gpa':'toeic499']
y = df_train.loc[:,'employment_score']
XX = df_test.loc[:,'gpa':'toeic499']
yy = df_test.loc[:,'employment_score']
## step2
predictr = sklearn.linear_model.LinearRegression()
## step3 
predictr.fit(X,y)
## step4 -- pass 
#---# 
print(f'train_score: {predictr.score(X,y):.4f}')
print(f'test_score: {predictr.score(XX,yy):.4f}')
train_score: 1.0000
test_score: 0.1171
s= pd.Series(predictr.coef_)
s.index = X.columns
s[1:].sum()
0.010302732920632579

- 그런데 사실 저 0.01이라는 값은 몇개의 계수만 있어도 만들 수 있다. (toeic2와 toeic3에 해당하는 계수)

s['toeic2']+s['toeic3']
0.010142832986793252

- 이런논리로 치면 toeic2, toeic3에 해당하는 계수만 있다면 사실 \(y\)를 설명하는데 충분했고, 나머지는 불필요한 특징이 된다. (그리고 불필요한 특징은 오버피팅을 유발한다)

Step2: Ridge의 아이디어

- Ridge의 아이디어: toeic2, toeic3 와 같이 몇개의 변수로만 0.01이라는 수를 설명할 수 없도록 “강제”하자. 즉 몇개의 변수로만 0.01이라는 수를 설명할 수 없도록 “패널티”를 주자.

- 패널티: 유사토익들의 계수값을 제곱한뒤 합치고(=L2-norm을 구하고), 그 값이 0에서 떨어져 있을 수록 패널티를 줄꺼야!

  • 이러한 패널티를 줄 경우 결과적으로 0.01의 값이 “동일하게 나누어져서” 나오는 값(=\(\frac{1}{100}\frac{1}{501}\))이 계수값으로 추정된다. (왜? – 요건 정확하게 이해하는게 사실 지금은 힘듬)

- 잘 적용된 Ridge의 결과를 보면 아래와 같이 계수값이 저장되어 있음.

## step1 --- toeic, gpa 만 남기고 나머지 변수를 삭제
df_train, df_test = sklearn.model_selection.train_test_split(df,test_size=0.3,random_state=42)
X = df_train.loc[:,'gpa':'toeic499']
y = df_train.loc[:,'employment_score']
XX = df_test.loc[:,'gpa':'toeic499']
yy = df_test.loc[:,'employment_score']
## step2
predictr = sklearn.linear_model.Ridge(alpha=5e8)
## step3 
predictr.fit(X,y)
## step4 -- pass 
#---# 
print(f'train_score: {predictr.score(X,y):.4f}')
print(f'test_score: {predictr.score(XX,yy):.4f}')
train_score: 0.7507
test_score: 0.7438
s = pd.Series(predictr.coef_)
s.index = X.columns
s
gpa         0.000001
toeic       0.000019
toeic0      0.000018
toeic1      0.000018
toeic2      0.000019
              ...   
toeic495    0.000018
toeic496    0.000019
toeic497    0.000019
toeic498    0.000019
toeic499    0.000019
Length: 502, dtype: float64
0.01/501
1.9960079840319362e-05

- 결국 Ridge를 사용하면 계수들의 값이 “동일하게 나누어지는” 효과가 나타남

2023-10-24 추가해설

모든 계수가 “엔빵”된다는 의미는 아니에요. 예를들어 X1=toeic, X2≈toeic*2 라면?

- 패널티를 주는 정도? \(\alpha\)로 조절함.. \(\alpha\)를 크게 할수록 패널티를 많이줌

C. \(\alpha\)에 따른 계수값 변화

- 여러개의 predictor 학습

## step1 --- toeic, gpa 만 남기고 나머지 변수를 삭제
df_train, df_test = sklearn.model_selection.train_test_split(df,test_size=0.3,random_state=42)
X = df_train.loc[:,'gpa':'toeic499']
y = df_train.loc[:,'employment_score']
XX = df_test.loc[:,'gpa':'toeic499']
yy = df_test.loc[:,'employment_score']
## step2
alphas = [5e2, 5e3, 5e4, 5e5, 5e6, 5e7, 5e8]
predictrs = [sklearn.linear_model.Ridge(alpha=alpha) for alpha in alphas]
## step3 
for predictr in predictrs:
    predictr.fit(X,y)
## step4 -- pass 

- 계수값 시각화

predictrs[0].alpha
500.0
plt.plot(predictrs[0].coef_[1:],label=r'$\alpha$={}'.format(predictrs[0].alpha))
plt.plot(predictrs[3].coef_[1:],label=r'$\alpha$={}'.format(predictrs[1].alpha))
plt.legend()

plt.plot(predictrs[3].coef_[1:],label=r'$\alpha$={}'.format(predictrs[3].alpha))
plt.plot(predictrs[5].coef_[1:],label=r'$\alpha$={}'.format(predictrs[5].alpha))
plt.legend()

plt.plot(predictrs[5].coef_[1:],label=r'$\alpha$={}'.format(predictrs[5].alpha))
plt.plot(predictrs[-1].coef_[1:],label=r'$\alpha$={}'.format(predictrs[-1].alpha))
plt.legend()

- 직관: 마지막 predictor의 계수값을 살펴보자.

predictrs[-1].coef_
array([1.10421248e-06, 1.89938091e-05, 1.77768343e-05, 1.82118332e-05,
       1.90895673e-05, 1.87128138e-05, 1.90343037e-05, 1.82483251e-05,
       1.90405022e-05, 1.85802628e-05, 1.90021086e-05, 1.88952130e-05,
       1.96003229e-05, 1.89154663e-05, 1.86638217e-05, 1.92666606e-05,
       1.97107043e-05, 1.92214868e-05, 1.92961317e-05, 1.93321368e-05,
       1.92194541e-05, 1.85663279e-05, 1.86805137e-05, 1.81649873e-05,
       1.78656367e-05, 1.83171419e-05, 1.94428947e-05, 1.89710925e-05,
       2.00598946e-05, 1.88384883e-05, 1.98903125e-05, 1.81113551e-05,
       1.85043847e-05, 1.84424971e-05, 1.91508275e-05, 1.97427867e-05,
       1.93598061e-05, 1.98264264e-05, 1.89934042e-05, 1.84770850e-05,
       1.83617634e-05, 1.79346774e-05, 1.84943159e-05, 1.89803006e-05,
       1.78633749e-05, 1.80073666e-05, 1.85664525e-05, 1.97390143e-05,
       1.86574281e-05, 1.92233226e-05, 1.91281904e-05, 1.85617627e-05,
       1.83939489e-05, 1.84309427e-05, 1.88142167e-05, 1.84159665e-05,
       1.94078579e-05, 1.84515402e-05, 1.88107980e-05, 1.85889903e-05,
       1.89357356e-05, 1.88750847e-05, 1.92107444e-05, 1.81799279e-05,
       1.92122152e-05, 1.97863670e-05, 1.89851436e-05, 1.88974919e-05,
       1.88566578e-05, 1.95841935e-05, 1.86398380e-05, 1.95801159e-05,
       1.87550098e-05, 1.87392625e-05, 1.87462595e-05, 1.96056001e-05,
       1.80626630e-05, 1.88237701e-05, 1.83108446e-05, 1.88087164e-05,
       1.84723703e-05, 1.84767748e-05, 1.89267252e-05, 1.87604297e-05,
       1.86945591e-05, 1.92924236e-05, 1.77843453e-05, 1.85415541e-05,
       1.91448999e-05, 1.98281375e-05, 1.97994651e-05, 1.86653004e-05,
       1.87298830e-05, 1.87474975e-05, 1.90018315e-05, 1.92043808e-05,
       1.88941675e-05, 1.81646176e-05, 1.91508494e-05, 2.04322537e-05,
       1.92111546e-05, 1.93061022e-05, 1.92088349e-05, 1.80206353e-05,
       1.89399818e-05, 1.96895533e-05, 1.94410839e-05, 1.92051217e-05,
       1.84961416e-05, 1.89785667e-05, 1.92235780e-05, 1.86729143e-05,
       1.88439733e-05, 1.76776615e-05, 1.87493841e-05, 1.86986837e-05,
       1.81917859e-05, 1.94657238e-05, 1.82063420e-05, 1.78143049e-05,
       1.88432683e-05, 1.90674860e-05, 1.86411824e-05, 1.93286721e-05,
       1.75163829e-05, 1.86852659e-05, 2.02343956e-05, 1.82025623e-05,
       1.89153395e-05, 1.98862774e-05, 1.94775038e-05, 1.90665531e-05,
       1.94170642e-05, 1.88227118e-05, 1.88792179e-05, 1.89712787e-05,
       1.87855482e-05, 1.87895464e-05, 2.00798925e-05, 1.97167119e-05,
       1.91644137e-05, 1.90990710e-05, 1.85836048e-05, 1.82346595e-05,
       1.85731253e-05, 1.84871242e-05, 1.90728256e-05, 1.90277156e-05,
       1.93085319e-05, 1.91719254e-05, 1.80097271e-05, 1.82517485e-05,
       1.90904218e-05, 1.85232604e-05, 1.88184612e-05, 1.84002976e-05,
       2.00337440e-05, 1.86478638e-05, 1.93507546e-05, 1.85547358e-05,
       1.97154574e-05, 1.91189346e-05, 1.93320777e-05, 1.85313268e-05,
       1.91085306e-05, 1.88406812e-05, 1.87444892e-05, 1.96637559e-05,
       1.83552699e-05, 1.80759243e-05, 1.94662845e-05, 1.93761303e-05,
       1.98339288e-05, 1.87139235e-05, 1.91131387e-05, 1.85801855e-05,
       1.91544816e-05, 1.98413649e-05, 1.84027849e-05, 1.81842651e-05,
       1.95888229e-05, 1.80738476e-05, 1.92457286e-05, 1.91474170e-05,
       1.88737956e-05, 1.78029998e-05, 1.97734483e-05, 1.92409710e-05,
       1.97346045e-05, 1.99425451e-05, 1.89157923e-05, 1.82538525e-05,
       1.87475300e-05, 1.79663692e-05, 1.94360535e-05, 1.93333725e-05,
       1.81368431e-05, 1.91860664e-05, 2.03648683e-05, 1.92870391e-05,
       1.92561212e-05, 1.92408929e-05, 1.77556464e-05, 1.89317813e-05,
       1.95230859e-05, 1.91845519e-05, 1.88923023e-05, 1.88368476e-05,
       1.89013580e-05, 1.82113056e-05, 1.86295402e-05, 1.92236940e-05,
       1.80025543e-05, 1.92322271e-05, 1.80917953e-05, 1.87188051e-05,
       1.93772655e-05, 1.87894009e-05, 1.86773984e-05, 1.96830961e-05,
       1.94593808e-05, 1.99377297e-05, 1.85707832e-05, 1.88667594e-05,
       1.85589760e-05, 1.98498326e-05, 1.88878514e-05, 1.90686529e-05,
       1.86868639e-05, 1.90576790e-05, 1.95494214e-05, 1.86567117e-05,
       1.85992014e-05, 1.77199587e-05, 1.82193592e-05, 1.90965903e-05,
       1.96016869e-05, 1.88116657e-05, 1.81131528e-05, 1.85436209e-05,
       1.92951259e-05, 1.92495993e-05, 1.84570073e-05, 1.94529446e-05,
       1.92760629e-05, 1.92236816e-05, 1.85750512e-05, 1.95451343e-05,
       1.82912208e-05, 1.88851896e-05, 1.86295173e-05, 1.84150640e-05,
       1.95101106e-05, 1.98423439e-05, 1.88687440e-05, 1.91657943e-05,
       1.89387389e-05, 1.89907539e-05, 1.90653825e-05, 1.80854343e-05,
       1.86906336e-05, 1.85793308e-05, 1.84992786e-05, 1.93964742e-05,
       1.83344151e-05, 1.89611068e-05, 1.91457644e-05, 1.88755070e-05,
       1.98511526e-05, 1.93068196e-05, 1.93316489e-05, 1.89507435e-05,
       1.89083004e-05, 1.91358509e-05, 1.87803906e-05, 1.78160168e-05,
       1.94603877e-05, 2.02569965e-05, 1.87423291e-05, 1.94609617e-05,
       1.91292677e-05, 1.85958571e-05, 1.88629266e-05, 1.90600256e-05,
       1.82221314e-05, 1.95093258e-05, 1.89176339e-05, 2.00028045e-05,
       1.94052035e-05, 1.86744967e-05, 1.89125601e-05, 2.02089363e-05,
       1.80569192e-05, 2.02141130e-05, 1.93147541e-05, 1.89011113e-05,
       1.93335891e-05, 1.96767360e-05, 1.90364715e-05, 1.94635849e-05,
       1.90397143e-05, 1.91973258e-05, 1.85857694e-05, 1.91487106e-05,
       1.92897509e-05, 1.99589223e-05, 1.89690091e-05, 1.90089893e-05,
       1.80391078e-05, 1.89867708e-05, 1.91430968e-05, 1.92719424e-05,
       1.95648244e-05, 1.85975115e-05, 1.92077870e-05, 1.84415844e-05,
       1.88715614e-05, 1.85970322e-05, 1.93261490e-05, 1.86726361e-05,
       1.97716032e-05, 1.92749150e-05, 2.00954709e-05, 1.90876286e-05,
       1.89190693e-05, 1.98831620e-05, 1.91612367e-05, 1.86269524e-05,
       1.89155394e-05, 1.89824518e-05, 1.98347756e-05, 1.86788886e-05,
       1.83508292e-05, 1.85069060e-05, 1.86909372e-05, 1.85978543e-05,
       1.88150510e-05, 1.89755849e-05, 1.90099289e-05, 1.90515657e-05,
       1.93189513e-05, 1.82151178e-05, 1.78471089e-05, 1.91763316e-05,
       1.84903926e-05, 1.92863572e-05, 1.90497739e-05, 1.87657428e-05,
       1.87801680e-05, 1.85137448e-05, 1.91226761e-05, 1.94084785e-05,
       1.81950620e-05, 1.81823646e-05, 1.87513814e-05, 1.97922951e-05,
       1.87200102e-05, 1.98409879e-05, 1.85874173e-05, 1.90513332e-05,
       1.85234477e-05, 1.81902197e-05, 1.76367508e-05, 1.90389194e-05,
       1.85299355e-05, 1.95358518e-05, 1.81772601e-05, 1.93671350e-05,
       1.91528856e-05, 1.91322975e-05, 1.85830738e-05, 1.85626882e-05,
       1.86250726e-05, 1.84514809e-05, 1.86800234e-05, 1.89256964e-05,
       1.90280385e-05, 1.88870537e-05, 1.86929332e-05, 1.95167742e-05,
       1.86377119e-05, 1.93693632e-05, 1.94429807e-05, 1.90730542e-05,
       1.86276638e-05, 1.86225787e-05, 1.87333026e-05, 1.94293224e-05,
       1.87174307e-05, 1.93106731e-05, 1.91898445e-05, 1.91446507e-05,
       1.83627209e-05, 1.85185991e-05, 1.90680366e-05, 1.88180597e-05,
       1.86586581e-05, 1.80051184e-05, 1.83329730e-05, 1.82088945e-05,
       1.87516598e-05, 1.82744310e-05, 1.90219092e-05, 1.89098591e-05,
       1.89001214e-05, 1.90959896e-05, 1.77157866e-05, 1.91760361e-05,
       1.80496598e-05, 1.85629242e-05, 1.93527162e-05, 1.85046434e-05,
       1.97977476e-05, 1.82757747e-05, 1.92849021e-05, 1.86829990e-05,
       1.86752898e-05, 1.95540241e-05, 1.92250030e-05, 1.84817730e-05,
       1.94636774e-05, 1.86057300e-05, 1.90096458e-05, 1.91037821e-05,
       1.98095086e-05, 1.92558748e-05, 1.94175627e-05, 1.86155519e-05,
       1.91386204e-05, 1.89659072e-05, 1.89507918e-05, 1.88868989e-05,
       1.91223138e-05, 1.81488441e-05, 1.95885497e-05, 1.87850789e-05,
       1.90457546e-05, 1.96549561e-05, 1.86983597e-05, 1.89788151e-05,
       1.98384237e-05, 1.99479277e-05, 1.91275095e-05, 1.89970341e-05,
       1.85749782e-05, 1.91683345e-05, 1.91850806e-05, 1.97386011e-05,
       1.93320833e-05, 1.92560345e-05, 1.85426153e-05, 1.85185853e-05,
       1.85764448e-05, 1.94279426e-05, 1.97685699e-05, 1.91733090e-05,
       1.84972022e-05, 1.89924907e-05, 1.83467563e-05, 1.95149016e-05,
       1.84410610e-05, 1.86536281e-05, 1.88181888e-05, 1.85487807e-05,
       1.88565643e-05, 1.89056942e-05, 1.95082352e-05, 1.91711709e-05,
       1.91422027e-05, 1.91363321e-05, 1.89114818e-05, 1.85390554e-05,
       1.92949067e-05, 1.88019353e-05, 1.85332879e-05, 1.86699430e-05,
       1.96934870e-05, 2.01293426e-05, 1.81411289e-05, 1.86806981e-05,
       1.90987154e-05, 1.85866377e-05, 1.96875267e-05, 1.88785203e-05,
       1.94435510e-05, 1.85812461e-05, 1.97178935e-05, 1.90067232e-05,
       2.02306858e-05, 1.86213361e-05, 1.94255182e-05, 1.86417320e-05,
       1.95689564e-05, 1.97728792e-05, 1.94352125e-05, 1.93768903e-05,
       1.90643113e-05, 1.79709383e-05, 1.90573271e-05, 1.85638225e-05,
       1.91337229e-05, 1.86437625e-05])
  • 불필요한 변수가 나올 수 없는 구조가 되어버렸음 (한 두개로 0.01을 만들 수 없음)
  • 모든 변수는 대략 2e-5(\(\approx \frac{1}{100}\frac{1}{501}\))정도 만큼 똑같이 중요하다고 생각된다.
  • 고급: 살짝 1/(100*501)보다 전체적으로 값이 작아보이는데, 이는 기분탓이 아님 (Ridge 특징)
1/100*1/501
1.9960079840319362e-05

D. \(\alpha\)에 따른 실험내용 정리

- 예비개념: L2-penalty는 그냥 대충 분산같은것..

x = np.random.randn(5)
l2_penalty = (x**2).sum()
l2_penalty, 5*(x.var()+(x.mean()**2))
(7.084638326878741, 7.084638326878739)

- \(\alpha\)가 커질수록 생기는 일

  • 크게 느낀것: 계수들의 값이 점점 비슷해짐 –> 계수들의 값들을 모아서 분산을 구하면 작아진다는 의미 –> L2-penalty 가 작아진다는 의미
  • 미묘하게 느껴지는 점: toeic, 그리고 toeic0~toeic499 까지의 계수총합은 0.01이 되어야 하는데, 그 총합이 미묘하게 작어지는 느낌.
for predictr in predictrs: 
    print(
        f'alpha={predictr.alpha:.2e}\t'
        f'l2_penalty={((predictr.coef_)**2).sum():.6f}\t'
        f'sum(toeic_coefs)={((predictr.coef_[1:])).sum():.4f}\t'
        f'test_score={predictr.score(XX,yy):.4f}'
    )
alpha=5.00e+02  l2_penalty=0.046715 sum(toeic_coefs)=0.0103 test_score=0.2026
alpha=5.00e+03  l2_penalty=0.021683 sum(toeic_coefs)=0.0102 test_score=0.4638
alpha=5.00e+04  l2_penalty=0.003263 sum(toeic_coefs)=0.0099 test_score=0.6889
alpha=5.00e+05  l2_penalty=0.000109 sum(toeic_coefs)=0.0099 test_score=0.7407
alpha=5.00e+06  l2_penalty=0.000002 sum(toeic_coefs)=0.0099 test_score=0.7447
alpha=5.00e+07  l2_penalty=0.000000 sum(toeic_coefs)=0.0098 test_score=0.7450
alpha=5.00e+08  l2_penalty=0.000000 sum(toeic_coefs)=0.0095 test_score=0.7438

- L2-penalty의 느낌은 대충 아래와 같이 분산으로 이해해도 무방

for predictr in predictrs: 
    print(
        f'alpha={predictr.alpha:.2e}\t'
        f'var(coefs)={(predictr.coef_).var()*501:.6f}\t'
        f'sum(toeic_coefs)={((predictr.coef_[1:])).sum():.4f}\t'
        f'test_score={predictr.score(XX,yy):.4f}'
    )
alpha=5.00e+02  var(coefs)=0.046618 sum(toeic_coefs)=0.0103 test_score=0.2026
alpha=5.00e+03  var(coefs)=0.021638 sum(toeic_coefs)=0.0102 test_score=0.4638
alpha=5.00e+04  var(coefs)=0.003256 sum(toeic_coefs)=0.0099 test_score=0.6889
alpha=5.00e+05  var(coefs)=0.000109 sum(toeic_coefs)=0.0099 test_score=0.7407
alpha=5.00e+06  var(coefs)=0.000001 sum(toeic_coefs)=0.0099 test_score=0.7447
alpha=5.00e+07  var(coefs)=0.000000 sum(toeic_coefs)=0.0098 test_score=0.7450
alpha=5.00e+08  var(coefs)=0.000000 sum(toeic_coefs)=0.0095 test_score=0.7438

E. \(\alpha\)가 크다고 무조건 좋은건 아니다.

## step1 --- toeic, gpa 만 남기고 나머지 변수를 삭제
df_train, df_test = sklearn.model_selection.train_test_split(df,test_size=0.3,random_state=42)
X = df_train.loc[:,'gpa':'toeic499']
y = df_train.loc[:,'employment_score']
XX = df_test.loc[:,'gpa':'toeic499']
yy = df_test.loc[:,'employment_score']
## step2
predictr = sklearn.linear_model.Ridge(alpha=1e12)
## step3 
predictr.fit(X,y)
## step4 -- pass 
Ridge(alpha=1000000000000.0)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
print(f'train_score={predictr.score(X,y):.4f}')
print(f'test_score={predictr.score(XX,yy):.4f}')
train_score=0.0191
test_score=0.0140
predictr.coef_[1:].sum() # 이 값이 0.01이어야 하는데, 많이 작아짐
0.00012585319204891574